

JEE MAIN 24 JANUARY 2025 SHIFT 2

CHEMISTRY QUESTION PAPER WITH ANSWER KEY

Q.No.	Questions	Answers
1	Consider the following reaction	y - 2x
	$S(s) + 3/2O_2(g) \rightarrow SO_3(g) + 2x \text{ KJ}$	
	$SO_2(g) + 1/2O_2(g) \rightarrow SO_3(g) + y KJ$	
	Calculate ΔH_r for the following reaction (KJ)	
	$S(s) + O_2 \rightarrow SO_2(g)$	
2	The conditions and consequences that favour the $t_{2g}^{3}e_{g}^{1}$ configuration in a metal complex are	Weak field ligand; High spin complex
3	When ethane-1 2-diammine is progressively added	Green→Pale
Di	to aqueous solution of Nickel (II) chloride the sequence of colour change observed will be:	Blue \rightarrow Blue \rightarrow Violet
4	Statement 1: The first ionisation energy of Pb is greater than that of Sn.	Statement 1 is correct but Statement 2 is incorrect.
	Statement 2: The first ionisation energy of Ge is greater than that of Si.	
5	$\overset{NH_2}{\longrightarrow} \overset{NH_2}{\longrightarrow} \overset{O}{\underset{Br}{\overset{O}}}$	Ac ₂ O, Fe/Br ₂ , H ₂ O/H ⁺

	Above conversion can be done by using which reagents among the following.	
6	Match the column: A. SC^{3+} - (P) 2.84 B. Ti^{2+} - (Q) 0 C. V^{2+} - (R) 5.92 D. Mn^{2+} - (S) 3.87	$A \rightarrow (Q), B \rightarrow (P), C \rightarrow (S),$ $D \rightarrow (R)$
7	In a compound contains 54.2% carbon, 9.2% of hydrogen and the rest are oxygen. What is molecular formula of compound, if molecular mass is 132 g/mol?	$C_6H_{12}O_3$
	Match the following nitrogenous bases present in List-I with their structures present in List-II. $\frac{\text{List-I}}{\text{A. Thymine}} (i) \qquad \qquad$	A-(ii), B-(i), C-(iv), D-(iii) Achieve

9	Consider the following gaseous reaction $H_2(g) + I_2(g) \rightarrow 2HI$ The above reaction is started with 'a' moles of H_2 and 'b' moles of I_2 in a closed container at a certain temperature T(K) till the equilibrium is established. Which one of the following plots correctly describes the progress of reaction?	Conc.
10	In the given compound no. of Sp and Sp ² hybridised carbon are $C = N$	3 and 3
11	How many stereoisomers are possible for 5-Phenylpent-4-en-2-ol?	4 kho
12 Di	A hydrocarbon X which has molar mass 80g contains 90% carbon. Find degree of unsaturation in X.	³ Achieve
13	The successive ionisation energy (IE) of an element 'X' is given	Group-2
	$\begin{array}{ccc} I.E_1 & I.E_2 & I.E_3 \\ X \rightarrow & 500 & 600 & 2000 \end{array}$	
	Data given in KJ/mol. Find out the group number of element x.	

14	Consider the following statements : Statement-1: Oxygen-oxygen bond in O_3 is greater than O_2 . Statement-II: O-O bond order in O_3 is 1.5 and O-O bond order in O_2 is 2.	Both Statement 1 and Statement 2 are correct
15	In Carius method of estimation of halogen, 0.25 g of an organic compound gave 0.16 g of AgBr. What is the percentage of bromine in the compound (Given molar mass of Ag = 108, Br = 80)	27%
16	Let k_1 , k_2 and k_3 be the rate constant of reaction and $k = \sqrt{k1k3/k2}$. Then find activation energy of overall reaction. (Given: Ea ₁ = 10 kJ/mol, Ea ₂ = 30 kJ/mol, Ea ₃ = 60 kJ/mol)	20

CollegeDekho Discover · Prepare · Achieve