

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

1. Consider the following reactions

$$S(s) + \frac{3}{2}O_2(g) \rightarrow SO_3(g) + 2x kJ$$

$$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g) + y kJ$$

Calculate ΔH_{r} for following reaction based on above information

$$S(s) + O_2 \rightarrow SO_2(g)$$
(1) - (x + y)
(2) -(2x + y)
(3) $\frac{x}{y}$
(4) y - 2x

Answer (4)

Sol.
$$\Delta H_1 = -2x \text{ kJ}$$

$$\Delta H_2 = -y kJ$$

 $\Delta Hr = \Delta H_1 - \Delta H_2$

$$\Delta H_r = -2x + y$$

- 2. The conditions and consequences that favour the $t_{2g}^3 e_g^1$ configuration in a metal complex are
 - (1) Strong field ligand; High spin complex
 - (2) Weak field ligand; High spin complex
 - (3) Strong field ligand; Low spin complex
 - (4) Weak field ligand; Low spin complex

Answer (2)

- **Sol.** The electronic configuration of $t_{2g}^3 e_g^1$ for central metal ion in a complex implies $\Delta_0 < P$ i.e., weak field ligand and High spin complex.
- 3. When ethane-1, 2-diammine is progressively added to aqueous solution of Nickel (II) chloride, the sequence of colour change observed will be:
 - (1) Pale Blue \rightarrow Blue \rightarrow Green \rightarrow Violet
 - (2) Violet \rightarrow Blue \rightarrow Pale Blue \rightarrow Green
 - (3) Pale Blue \rightarrow Blue \rightarrow Violet \rightarrow Green
 - (4) Green \rightarrow Pale Blue \rightarrow Blue \rightarrow Violet

Answer (4)

Sol. If the bidentate ligand, ethane-1, 2-diammine(en) is progressively added in the molar ratio en: Ni 1 : 1, 2 : 1, 3 : 1, the following series of reactions and their associated colour changes occur:-

$$\begin{bmatrix} \mathsf{Ni}(\mathsf{H}_2\mathsf{O})_6 \end{bmatrix}^{2+} (\mathsf{aq.}) + (\mathsf{en})(\mathsf{aq.}) \longrightarrow \begin{bmatrix} \mathsf{Ni}(\mathsf{H}_2\mathsf{O})_4(\mathsf{en}) \end{bmatrix}^{2+} (\mathsf{aq.}) + 2\mathsf{H}_2\mathsf{O} \\ (\mathsf{Green}) \\ (\mathsf{Pale Blue}) \end{bmatrix}$$

 $\begin{bmatrix} \mathsf{Ni}(\mathsf{H}_2\mathsf{O})_4(\mathsf{en}) \end{bmatrix}^{2+} (\mathsf{aq.}) + (\mathsf{en})(\mathsf{aq.}) \longrightarrow \begin{bmatrix} \mathsf{Ni}(\mathsf{H}_2\mathsf{O})_2(\mathsf{en})_2 \end{bmatrix}^{2+} (\mathsf{aq.}) + 2\mathsf{H}_2\mathsf{O} \\ \xrightarrow{(\mathsf{Pale Blue})} (\mathsf{Blue}/\mathsf{Purple}) \end{bmatrix}^{2+} (\mathsf{aq.}) + 2\mathsf{H}_2\mathsf{O}$

 $\begin{bmatrix} Ni(H_2O)_2(en)_2 \end{bmatrix}^{2+} (aq.) + (en)(aq.) \longrightarrow \begin{bmatrix} Ni(en)_3 \end{bmatrix}^{2+} (aq.) + 2H_2O \\ \underset{Violet}{}^{Violet} \end{bmatrix}^{2+} (aq.) + 2H_2O$

S-I :- The first ionisation energy of Pb is greater than that of Sn.

S-II:- The first ionisation energy of Ge is greater than that of Si.

- (1) S-I and S-II both are correct
- (2) S-I is correct and S-II incorrect
- (3) S-I is incorrect and S-II correct
- (4) S-I and S-II both are incorrect

Answer (2)

4.

Sol. IE₁ of Pb = 715 kJ/mol

JEE (Main)-2025 : Phase-1 (24-01-2025)-Evening

 IE_1 of Si = 786 kJ/mol

 IE_1 of Ge = 761 kJ/mol

SI is correct and S-II is incorrect

5.
$$(I) \xrightarrow{H_2} \longrightarrow (I) \xrightarrow{H_2} \xrightarrow$$

Above conversion can be done by using which reagents among the following.

- (1) Fe/Br₂, H₂O(Δ), H₂SO₄
- (2) AcOH, H₂SO₄, Br₂, NaOH
- (3) AcCl, Fe/Br₂, H₂O/H⁺
- (4) AcOH, Br₂/Fe, NaOH

Answer (3)

Match Column-I with the Column-II and select the correct option.

Column-I

(Ionic species)

Column-II (Spin only magnetic

moment (BM))

(P) 2.84

- A. Sc³⁺
- B. Ti²⁺ (Q) 0
- C. V²⁺ (R) 5.92
- D. Mn²⁺ (S) 3.87
- (1) $A \rightarrow$ (P), $B \rightarrow$ (Q), $C \rightarrow$ (R), $D \rightarrow$ (S)
- (2) $A \rightarrow (R), B \rightarrow (S), C \rightarrow (P), D \rightarrow (Q)$
- (3) $A \rightarrow (Q), B \rightarrow (P), C \rightarrow (S), D \rightarrow (R)$
- (4) $A \rightarrow (Q), B \rightarrow (P), C \rightarrow (R), D \rightarrow (S)$

Answer (3)

Sol. $Sc^{3+} \rightarrow 0 BM$

 $Ti^{2+} \rightarrow 2.84 \text{ BM}$

 $V^{2+} \rightarrow 3.87 \text{ BM}$

 ${\rm Mn^{2+}}
ightarrow 5.92~{\rm BM}$

- 7. If a compound contains 54.2% carbon, 9.2% hydrogen and the rest is oxygen. What is molecular formula of the compound, if molecular mass is 132 g/mol?
 - (1) C₆H₁₂O₃
 - (2) C₄H₁₂O₃
 - (3) C₄H₁₂O₆
 - (4) C₆H₁₃O₆

Answer (1)

Sol. Let mass of compound be 100 g

		Mass (g)	Mole	Molar ratio
	c	54.2	$\frac{54.2}{12} = 4.52$	2
	Н	9.2	$\frac{9.2}{1} = 9.2$	4
5	0	36.6	$\frac{36.6}{16} = 2.3$	1

Empirical formula = C₂H₄O

```
\Rightarrow MF = n(EF)
```

 $n = \frac{MF mass}{EF mass}$

 $\frac{132}{44} = 3$

 $MF = 3(C_2H_4O)$

 $= C_6 H_{12} O_3$

D. Uracil

(1) A-(i), B-(ii), C-(iii), D-(iv)

(2) A-(ii), B-(i), C-(iv), D-(iii)

(3) A-(ii), B-(i), C-(iii), D-(iv)

(4) A-(iii), B-(iv), C-(i), D-(ii)

Match the following nitrogenous bases present in List-I 8. with their structures present in List-II.

····· ····				
List-I	List-II			
A. Thymine	$(i) HC H_2 N C N C N C N C N C C N C C N C C N C C N C C C N C C C C N C$			
B. Adenine	(ii) $H_{3}C \sim C \sim C \sim NH$ $H_{3}C \sim C \sim C \sim NH$ $HC \sim N \sim C \sim O$ H			
C. Cytosine				

NH₂

H (iv)

HC

Answer (2)

Sol. Correct structure of

The above reaction is started with 'a' moles of H_2 and 'b' moles of I_2 in a closed container at a certain temperature T(K) till the equilibrium is established. Which one of the following plots correctly describes the progress of reaction?

Answer (2)

- Sol. The reaction is started with certain concentrations of H₂ and I₂ to form HI. The concentrations of H₂ and I₁ decrease with time while the concentration of HI increases with time till their concentrations become constant at equilibrium.
- 10. In the given compound no. of sp and sp² hybridised carbon are

(4) 3 and 3

Answer (4)

11. The successive ionisation energy (I.E.) of an element 'X' is given

	I.E1	I.E ₂	I.E₃	I.E4	I.E ₅
$X \rightarrow$	500	600	2000	2200	2600
Data given in KJ/mol.					

Find out the group number of element X.

(1) Group \rightarrow (2) Group \rightarrow (3) Group $\rightarrow 2$ (4) Group \rightarrow

Answer (3)

Sol. Since the ratio of $\frac{IE_3}{IE_2}$ is maximum, so the element X belongs to group 2.

12. Consider the following statements :

> Statement-I: Oxygen-oxygen bond in O3 is greater than O₂.

> Statement-II : O – O bond order in O₃ is 1.5 and O – O bond order in O2 is 2.

- (1) Both Statement-I and Statement-II are correct
- (2) Both Statement-I and Statement-II are incorrect
- (3) Statement-I is correct, Statement-II is incorrect
- (4) Statement-I is incorrect, Statement-II is correct

Answer (1)

$$\textbf{Sol.} \quad 0 = \stackrel{+}{0} - \stackrel{-}{0} \stackrel{-}{\leftrightarrow} \stackrel{-}{0} - \stackrel{+}{0} = 0$$

Bond order =
$$\frac{3}{2} = 1.5$$

Bond order = 2

13.		
14.		
15.		
16.		
17.		
18.		
19.		
20.		

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. How many stereoisomers are possible for 5-Phenylpent-4-en-2-ol.

...

Answer (4)

Sol.	Ph 5	4	2/ 1

There are two centre which can show stereoisomers, one chiral centre and one geometrical centre.

For unsymmetrical compound

Total isomers = 2ⁿ

- n = 2
 - = 2²

22. A hydrocarbon X which has molar mass 80 g contains 90% carbon by mass. Find degree of unsaturation in X

Answer (3)

Sol. Mass of C-atom
$$= \frac{90}{100} \times 80 \text{ g}$$

 $= 72 \text{ g}$
Moles of C-atom $\frac{72}{12} = 6 \text{ mol C}$
Mass of H-atom $= \frac{10}{100} \times 80 = 8 \text{ g}$

Moles of H-atom =
$$\frac{8}{1}$$
 = 8 mol H

 \therefore Molecular formula of $X \rightarrow C_6 H_8$

$$D.U = C + 1 - \frac{H}{2}$$
$$= 6 + 1 - \frac{8}{2}$$
$$= 7 - 4 = 3$$

Degree of unsaturation \rightarrow 3

23. In Carius method of estimation of halogen, 0.25 g of an organic compound gave 0.16 g of AgBr. What is the percentage of bromine in the organic compound (Given molar mass of Ag = 108, Br = 80)

Answer (27)

Sol. Moles of AgBr
$$= \frac{0.16}{188}$$
 moles

Mass of Br
$$=$$
 $\frac{0.16}{188} \times 80 \text{ g}$

% of Br =
$$\frac{0.068}{0.25} \times 100$$

= 27%

= 0.068 g 🕤

4. Let
$$k_1$$
, k_2 and k_3 be the rate constant of reaction and
 $k = \sqrt{\frac{k_1k_3}{k_2}}$. Then find activation energy of overall
reaction. (Given : $E_{a_1} = 10 \text{ kJ/mol}$, $E_{a_2} = 30 \text{ kJ/mol}$,
 $E_{a_3} = 60 \text{ kJ/mol}$)

Answer (20)

Sol.
$$(E_a)_{overall} = \frac{1}{2}[E_{a_1} + E_{a_3} - E_{a_2}]$$

= $\frac{1}{2}[10 + 60 - 30]$
= 20 kJ/mole

25.

