

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

- 1. If $7 = 5 + \frac{1}{7}(5 + \alpha) + \frac{1}{7^2}(5 + 2\alpha) + \dots \infty$ terms, then α is equal to
 - (1) 6 (2) $\frac{6}{7}$ (3) $\frac{1}{7}$ (4) 1

Answer (1)

$$S = a + (a + d)r + (a + 2d)r^{2} + ... \infty$$

Then $S = \frac{a}{1 - r} + \frac{dr}{(1 - r)^{2}}$
 $7 = \frac{S}{1 - \frac{1}{7}} + \frac{\alpha \cdot \frac{1}{7}}{\left(1 - \frac{1}{7}\right)^{2}}$

 $\Rightarrow \alpha = 6$

- 2. If A and B are binomial coefficients of 30^{th} and 12^{th} term of binomial expansion $(1 + x)^{2n-1}$. If 2A = 5B, then the value of n is
 - (1) 20 (2) 21
 - (3) 14 (4) 20

Answer (2)

Sol. $T_{r+1} = {}^{2n-1}C_r^{x^r}$

Coefficient of
$$T_{30} = {}^{2n-1}C_{29} = A$$

Coefficient of $T_{12} = {}^{2n-1}C_{11} = B$

$$\Rightarrow 2\left({}^{2n-1}C_{29}\right) = 5\left({}^{2n-1}C_{11}\right)$$

 \Rightarrow Solving we get n = 21

- 3. The equation of chord of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ with
 - (3, 1) as mid-point is
 - (1) 48x + 25y 169 = 0 (2) 25x + 5y 125 = 0
 - (3) 65x + 2y 12 = 0 (4) 45x + 4y 135 = 0

Answer (1)

Sol. Chord with given mid-point

$$\Rightarrow T = S_1$$

$$\Rightarrow \left(\frac{xx_1}{25} + \frac{yy_1}{16} - 1\right) = \frac{x_1^2}{25} + \frac{y_1^2}{16} - 1$$

$$\Rightarrow \frac{3x}{25} + \frac{y}{16} - 1 = \frac{9}{25} + \frac{1}{16} - 1$$

$$\Rightarrow 48x + 25y - 400 = 144 + 25 - 400$$

$$\Rightarrow 48x + 25y = 169$$
If system of equations
$$x + 2y - 3z = 2$$

$$2x + \lambda y + 5z = 5$$

 $4x + 3y + \mu z = 33$ has infinite solutions, then $\lambda + \mu$ is equal to

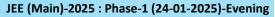
5

(1)
$$\frac{1334}{5}$$
 (2) $\frac{1269}{5}$
(3) $\frac{261}{5}$ (4) $\frac{1063}{5}$

Answer (1)

4.

Sol.
$$\Delta = \begin{vmatrix} 1 & 2 & -3 \\ 2 & \lambda & 5 \\ 4 & 3 & \mu \end{vmatrix} = 0$$
$$\Rightarrow 12\lambda + \lambda\mu - 4\mu + 7 = 0$$
$$\Delta z = 25\lambda - 95 = 0$$
$$\Rightarrow \lambda = \frac{95}{25} = \frac{19}{5}$$
$$\Delta v = 0$$



$$\Rightarrow \frac{263 - \mu}{5} = 0$$
$$\Rightarrow \mu = 263$$
$$\therefore \lambda + \mu = \frac{1334}{5}$$

akash

5. Let S_n denotes the sum of the first *n* terms of an arithmetic progression. If $S_{40} = 1030$ and $S_{12} = 57$, then the value of $S_{30} - S_{10}$ is

(1)	505	(2)	510
(3)	515	(4)	520

Answer (3)

Sol.
$$S_{40} = 1030 \Rightarrow \frac{40}{2} [2a + 39d] = 1030 ...(i)$$

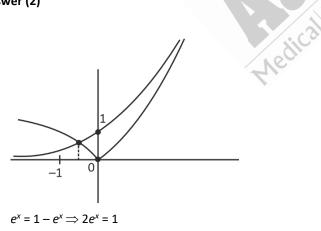
 $S_{12} = 57 \Rightarrow \frac{12}{2} [2a + 11d] = 57 ...(ii)$
From (i) & (ii) $a = \frac{-7}{2}, d = \frac{3}{2}$
 \Rightarrow
 $S_{30} - S_{10} = \frac{30}{2} [2a + 29d] - \frac{10}{2} [2a + 9d] = 20a + 390d$
 $= 515$

6. The area of region enclosed by the curves $y = e^x$, $y = |e^x - 1|$ and y - axis is (in sq. units)

(1) 1(2) $1 - \ln 2$ (3) $1 + \ln 2$ (4) $\ln 2$

Answer (2)

Sol.



$$\Rightarrow e^{x} = \frac{1}{2}$$

$$\Rightarrow x = \ln \frac{1}{2}$$

$$\Rightarrow \int_{\ln(\frac{1}{2})}^{0} \left[e^{x} - (1 - e^{x}) \right] dx$$

$$= \int_{\ln2}^{0} (2e^{x} - 1) dx = 2e^{x} - x \Big|_{-\ln2}^{0}$$

$$= 2 - (1 + \ln 2)$$

$$= 1 - \ln 2$$
7. Consider an event *E* such that a matrix of order 2 × 2 is invertible with entries 0 or 1. Then, *P*(*E*) is (where *P*(*X*) denotes the probability of event *X*)
(1) $\frac{5}{8}$
(2) $\frac{3}{8}$
(3) $\frac{1}{8}$
(4) $\frac{7}{8}$
Answer (2)
Sol. $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 0$

$$\Rightarrow ad - bc = 0$$

$$\Rightarrow ad - bc = 0$$

$$\Rightarrow ad - bc = 0$$

$$a = 0, d = 0$$

$$a = 0, d = 1$$

$$a = b = c = d = 1$$
Case-I
$$a = 0, d = 1$$

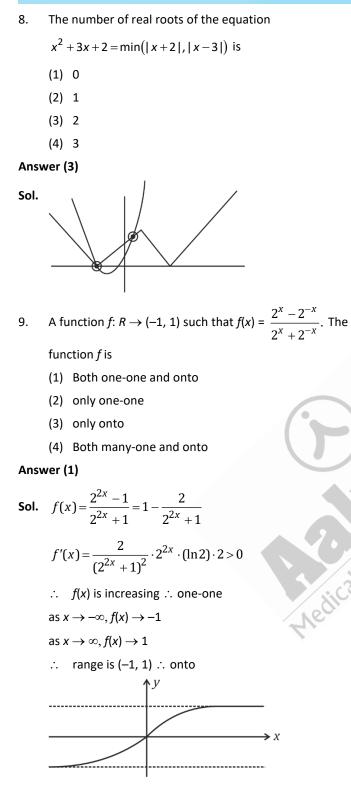
$$b = 0, c = 1$$

$$a = 1, d = 0$$

$$3 \times 3 = 9 \text{ cases}$$

$$\therefore \frac{2^{4} - 10}{2^{4}} = \frac{6}{16} = \frac{3}{8}$$

JEE (Main)-2025 : Phase-1 (24-01-2025)-Evening



10. Let
$$\vec{a} = 3\hat{i} + 2\hat{j} - \hat{k}$$
, $\vec{b} = \vec{a} \times (\hat{i} - 2\hat{j})$ and $\vec{c} = \vec{b} \times \hat{k}$, then
projection of $\vec{c} - 2\hat{j}$ on \vec{a} is equal to
(1) $2\sqrt{14}$
(2) $3\sqrt{7}$
(3) $2\sqrt{7}$
(4) $\frac{3\sqrt{14}}{14}$
Answer (4)
Sol. $\vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & -1 \\ 1 & -2 & 0 \end{vmatrix} = -2\hat{i} - \hat{j} - 8\hat{k}$
 $\vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & -1 & -8 \\ 0 & 0 & 1 \end{vmatrix} = -\hat{i} + 2\hat{j}$
 $\Rightarrow \vec{c} - 2\hat{j} = -\hat{i}$
 \Rightarrow Projection of $\vec{c} - 2\hat{j}$ on $\vec{a} = |(\vec{c} - 2\hat{j}) \cdot \hat{a}|$
 $= \frac{3}{\sqrt{14}} = \frac{3\sqrt{14}}{14}$
11. If $\alpha > \beta > \gamma > 0$ then find
 $\cot^{-1}\left(\frac{1+\alpha\beta}{\alpha-\beta}\right) + \cot^{-1}\left(\frac{1+\beta\gamma}{\beta-\gamma}\right) + \cot^{-1}\left(\frac{1+\gamma\alpha}{\gamma-\alpha}\right)$
(1) π (2) 0
(3) $\frac{\pi}{2} - (\alpha+\beta+\gamma)$ (4) 3π
Answer (1)
Sol. $\cot^{-1}\left(\frac{1+\alpha\beta}{\alpha-\beta}\right) + \cot^{-1}\left(\frac{1+\beta\gamma}{\beta-\gamma}\right) + \cot^{-1}\left(\frac{1+\gamma\alpha}{\gamma-\alpha}\right)$
 $= \tan^{-1}\left(\frac{\alpha-\beta}{1+\alpha\beta}\right) + \tan^{-1}\left(\frac{\beta-\gamma}{1+\beta\gamma}\right) + \pi + \tan^{-1}\left(\frac{\gamma-\alpha}{1+\gamma\alpha}\right) + \tan^{-1}\left(\frac{\gamma-\alpha}{1+\gamma\alpha}\right) + \pi$

à

lakash

JEE (Main) 2024

- 13 -

Delivering Champions Consistently

JEE (Advanced) 2024

5

Aakash

Answer (55)

	$= \tan^{-1}\alpha - \tan^{-1}\beta + \tan^{-1}\beta - \tan^{-1}\gamma + \tan^{-1}\gamma - \tan^{-1}\alpha + \pi$	
	$= 0 + \pi$	
	$=\pi$	
12.		
13.		
14.		
15.		
16.		
17.		
18.		
19.		
20.		

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21.	If $\lim_{x \to 0} \begin{vmatrix} a + \frac{\sin x}{x} & 1 & 1 \\ a & 1 + \frac{\sin x}{x} & 1 \\ a & 1 & a + \frac{\sin x}{x} \end{vmatrix}$
	= $\mu a^2 + \lambda a + \alpha$, then $\mu + \lambda + \alpha$ is
Ansv	wer (4)
Sol.	$\begin{vmatrix} a+1 & 1 & 1 \\ a & 2 & 1 \\ a & 1 & a+1 \end{vmatrix} = a^2 + 2a + 1$
	∴ µ=1
	$\lambda = 2$
	α = 1
	$\therefore \mu + \lambda + \alpha = 4$
22.	The point $P\left(\frac{11}{2}, \alpha\right)$ lies on or inside the triangle formed
	by the lines <i>x</i> + <i>y</i> = 11, <i>x</i> + 2 <i>y</i> = 16 and 2 <i>x</i> + 3 <i>y</i> = 29, then
	minimum value of 10 $lpha$ is equal to

Sol. 2x + 3y = 29(6, 5) $x = \frac{11}{2}$ Clearly, $x = \frac{11}{2}$ intersect x + y - 11 = 0 at $\left(\frac{11}{2}, \frac{11}{2}\right)$ and 2x + 3y - 29 = 0 at $\left(\frac{11}{2}, 6\right)$. $\Rightarrow \alpha \in \left[\frac{11}{2}, 6\right]$ \Rightarrow minimum value of 10 α = 55 23. If $\int \frac{2x^2 + 5x + 9}{x^2 + x + 1} dx = x\sqrt{x^2 + x + 1} + \alpha\sqrt{x^2 + x + 1}$ + $\beta \ln \left(x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right) + C$, then α + 2 β equals to Answer (16) Sol. $l = \int \frac{2x^2 + 5x + 9}{x^2 + x + 1} dx.$ Let $\frac{2x^2 + 5x + 9}{\sqrt{x^2 + x + 1}} = \frac{A(x^2 + x + 1) + B(2X + 1) + C}{\sqrt{x^2 + x + 1}}$ Then, A = 2, $B = \frac{3}{2}$ and $C = \frac{11}{2}$ $\therefore I = \int \frac{2(x^2 + x + 1) + \frac{3}{2}(2x + 1) + \frac{11}{2}}{\sqrt{x^2 + x + 1}} dx$ $=2\int \sqrt{x^{2}+x+1} \, dx + \frac{3}{2} \cdot 2\sqrt{x^{2}+x+1} + \frac{11}{2}\int \frac{1}{\sqrt{x^{2}+x+1}} \, dx$

JEE (Main)-2025 : Phase-1 (24-01-2025)-Evening

$$=2\int \sqrt{\left(x+\frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}} dx + 3\sqrt{x^{2} + x + 1}} + \frac{11}{2}\int \frac{dx}{\left(x+\frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}} dx + 3\sqrt{x^{2} + x + 1}} + \frac{11}{2}\int \frac{dx}{\left(x+\frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}} dx + \frac{11}{2}\int \frac{dx}{\left(x+\frac{1}{2}\right)^{2} + \frac{11}{2}\int \frac{dx}{\left(x+\frac{1}{2}\right)^{2} + \frac{11}{2}\int \frac{dx}{\left(x+\frac{1}{2}\right)^{2} + \frac{11}{2}\int \frac{dx}{\left(x+\frac{1}{2}\right)^{2}} dx + \frac{11}{2}\int \frac{dx}{\left(x+\frac{1}{2}\right)^{2} + \frac{11}{2}\int \frac{dx}{\left(x+\frac{1}{2}\right)^{2}} dx + \frac{11}{2}\int \frac{dx}{\left(x+\frac{1}{2}\right)^{2} + \frac{11}{2}\int \frac{dx}{\left(x+\frac{1}{2}\right)^{2}} dx + \frac{11$$

$$= x\sqrt{x^{2} + x + 1} + \frac{7}{2}\sqrt{x^{2} + x + 1}$$
$$+ \frac{25}{4}\ln\left|x + \frac{1}{2} + \sqrt{x^{2} + x + 1}\right| + C$$
$$\therefore \ \alpha = \frac{7}{2}, \ \beta = \frac{25}{4}$$
Then $\alpha + 2\beta = \frac{7}{2} + \frac{25}{2} - 16$

24. In group A, there are 7 boys and 3 girls and in group B, there are 4 boys and 5 girls. For a picnic trip 4 boys and 4 girls are required such that 5 are selected from group A and 3 are selected from group B. Then the total number of ways to select the team for picnic trip is

Answer (5880)

Sol. Group A (7B + 3G), Group B(4B + 5G)

Number of required ways = $({}^{7}C_{4} \cdot {}^{3}C_{1}) \cdot ({}^{4}C_{0} \cdot {}^{5}C_{3})$

+
$$({}^{7}C_{3} \cdot {}^{3}C_{2}) \cdot ({}^{4}C_{1} \cdot {}^{5}C_{2})$$

+ $({}^{7}C_{2} \cdot {}^{3}C_{3}) \cdot ({}^{4}C_{2} \cdot {}^{5}C_{1})$

= 5880

