

JEE-Main-24-01-2025 (Memory Based)
[EVENING SHIFT]
Maths
7 = 5 +
$$\frac{1}{7}(5 + \alpha) + \frac{1}{7^2}(5 + 2\alpha) + \dots \infty$$

terms, then α is
equal to
Options:
(a) 6
(b) 6/7
(c) 1/7
(d) 1
Answer: (a)
 $S_{\infty} = a + (a + d)r + (a + 2d)r^2 + \dots \infty$
 $S_{\infty} = \frac{a}{1-r} + \frac{rd}{(1-r)^2}$
 $s = 7, a = 5, r = \frac{1}{17}, d = \alpha$
 $7 = \frac{5}{1-\frac{1}{7}} + \frac{\frac{1}{7}ga}{(1-\frac{1}{7})^2}$
 $7 = \frac{35}{6} + \frac{7\alpha}{36}$
 $1 = \frac{5}{6} + \frac{\alpha}{36}$
 $36 = 30 + \alpha$
 $\alpha = 6.$

Question: If A and B are binomial coefficients of 30^{th} and 12^{th} term of binomial expansion $(1 + x)^{2n-1}$. If 2A = 5B, then the value of n is Options:

(a) 20 (b) 21 (c) 14 (d) 20 **Answer: (b)**

 $(1+x)^{2n-1}$ $T_{30} = {}^{2n-1} C_{29} x^{29}$ $T_{12} = {}^{2n-1} C_{11} x^{11}$ $A = {}^{2n-1} C_{29}$ $B = {}^{2n-1} C_{11}$ $2 \times \frac{(2n-1)!}{29! \times (2n-30)!} = \frac{5 \times (2n-1)!}{11! \times (2n-12)!}$ $\frac{2}{29! \times 10!} = \frac{5}{11! \times 28!}$ $\frac{2}{29x} = \frac{5}{11}$ n = 21 $\frac{2}{29! \times 12!} = \frac{5}{11! \times 30!}$ $\frac{1}{6} = \frac{1}{6}$ $\therefore n = 21$

Question: The equation of chord of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ with (3,1) as mid-point is Options:

(a) 48x + 25y - 169 = 0(b) 25x + 5y - 125 = 0(c) 65x + 2y - 12 = 0(d) 45x + 4y - 135 = 0Answer: (a)

t = s

$$\frac{\frac{3x}{25} + \frac{y_1}{16} - 1}{\frac{(3x)16 \times 25}{25 - 16}} = \frac{\frac{(9)(16) \times (25)}{25 - 16}}{\frac{(9)(16) \times (25)}{25 - 16}}$$

48x + 25y - 169 = 0

Question: If system of equations

x + 2y - 3z = 2 $2x + \lambda y + 5z = 5$ $4x + 3y + \mu z = 33 \text{ has infinite solutions, then } \lambda + \mu \text{ is equal to}$ Options: $\frac{1334}{(a)}$ (a) $\frac{1334}{5}$ (b) $\frac{1269}{5}$ (b) $\frac{261}{5}$ (c) $\frac{5}{5}$ (d) $\frac{1063}{5}$ (e) $\frac{1063}{5}$ (f) $\frac{1063}{5}$ (f) $\frac{1063}{5}$

Answer: (a)

$$D_{2} = 0 \begin{vmatrix} 1 & 2 & -3 \\ 2 & 5 & 5 \\ 4 & 33 & \mu \end{vmatrix} = 0$$

$$4 (25) - 33 (11) + \mu (1) = 0$$

$$= 363 - 100\mu = 263$$

$$D_{3} = 0 \begin{vmatrix} 1 & 2 & 2 \\ 2 & \lambda & 5 \\ 4 & 3 & 33 \end{vmatrix} = 0$$

$$- 2 (46) + \lambda (25) - 3 (1) = 0$$

$$25\lambda = 85$$

$$\lambda = \frac{85}{25} = \frac{19}{5} = \lambda$$

$$\lambda + \mu = \frac{19}{5} + 263$$

$$= \frac{1334}{5}$$

Question:Let S_n denotes the sum of first n terms of an arithmetic progression. If $S_{40} = 1030$ and $S_{12} = 57$, then the value of $S_{30} - S_{10}$ is Options: (a) 505 (b) 510

(c) 515

(d) 520

Answer: (c)

$$\begin{split} S_{10} &= 1030, S_{12} = 57 \\ \frac{40}{2} (2a + 39d) &= 103 \\ 2a + 39d &= \frac{103}{2} \\ \frac{12}{2} (2a + 11d) &= 57 \\ 2a + 11d &= \frac{19}{2} \\ 2a + 39d &= \frac{103}{2} \\ 2a + 11d &= \frac{19}{2} \\ 28d &= 42 \\ d &= \frac{42}{28} \\ d &= \frac{3}{2} \\ 2a + \frac{33}{2} &= \frac{19}{2} \\ 2a &= -7 \\ a &= \frac{-7}{2} \\ \end{split}$$

Question: Consider an event E such that a matrix of order 2 × 2 is invertible with entries 0 or 1. Then, P(E) is (were P(X) denotes the probability of event X) Options: 5

(a) $\frac{5}{8}$ (b) $\frac{3}{8}$ (c) $\frac{1}{8}$ (c) $\frac{7}{8}$ (d) $\frac{8}{8}$ Answer: (b)

 $2 \times 2 \rightarrow \text{Matrix}$ |A|
eq 0 $n\left(s
ight)=2 imes2 imes2 imes2 imes16$ $A \operatorname{can't} be$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ So, total \Rightarrow 10 types of matrix we can't take $\therefore P\left(\bar{A}\right) = \frac{10}{16} = \frac{5}{8}$ $\therefore P\left(A\right) = 1 - P\left(\bar{n}\right) = 1 - \frac{5}{8} \Rightarrow \frac{3}{8}$ $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq \begin{matrix} 0 & \mathrm{ad} \neq \mathrm{bc} \end{matrix}$ $bc=0 \qquad 3 {
m ways} \ bc=1 \qquad 3 {
m ways}$ ad = 1ad = 0So $\frac{6}{16} = \frac{3}{8}$

Question: Two groups A consists of 5 boys and 3 girls and Bhave 4 boys and 2 girls, we need to select 4 boys and 4 girls in total such that there must be 5 members of A and 3 of B.

Solution :

 $A \Rightarrow 5B, 3G$ $B \Rightarrow 4B, 2G$ $4B, 4G \Box \text{ Total}$

5 N	Members	A,	3	Members	of B
-----	----------------	----	---	---------	------

А	В
3B	1B
2G	2G
2B	2B
3G	1G

 $rac{2^x\,-2^{-x}}{2^x\,+\,2^{-x}}.$

=

 ${}^{5}C_{3} {}^{3}C_{2} {}^{4}C_{1} {}^{2}C_{2} + {}^{5}C_{2} {}^{3}C_{3} {}^{4}C_{2} {}^{2}C_{1}$ 10 · 3 · 4 · 1 + 10 · 1 · 6 · 2 120 + 120 = 240

$$\int rac{2x^2\,+5x\,+1}{\sqrt{x^2\,+\,x+1}}dx$$

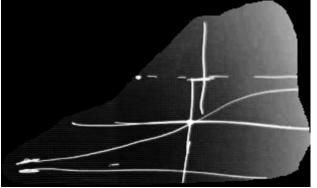
Question: Solve Solution :

$$\begin{split} &\int \sqrt{x^2 + x + 1} \, dx + \int \frac{3x - 1}{\sqrt{x^2 + x + 1}} \, dx \\ &\int 2\sqrt{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} \, dx + \frac{3}{2} \int \frac{2x + 1}{\sqrt{x^2 + x + 1}} \, dx - \frac{5}{2} \int \frac{1}{\sqrt{\left(x + \frac{1}{2}\right)^2} + \frac{3}{4}} \, dx \\ &= 2\left[\frac{\left(x + \frac{1}{2}\right)}{2} \sqrt{x^2 + x + 1} + \frac{3}{8} \, \ell n \left(\sqrt{x^2 + x + 1} + x + \frac{1}{2}\right)\right] \\ &+ \frac{3}{2} \times 2\sqrt{x^2 + x + 1} - \frac{5}{2} \, \ell n \left(\sqrt{x^2 + x + 1} + x + \frac{1}{2}\right) \\ &= \left(x + \frac{1}{2}\right) \sqrt{x^2 x + 1} + 3\sqrt{x^2 + x + 1} - \frac{7}{2} \, \ell n \left(x + \frac{1}{2}\right) + \sqrt{x^2 + x + 1} + C \Big| \end{split}$$

Question: A function f : R \rightarrow (-1, 1) such that The function f is Options:

(a) Both one-one and onto
(b) Only one-one
(c) Only onto
(d) Both many - one and onto
Answer: (a)

$$egin{aligned} f(x) &= rac{2^x - 2^{-x}}{2^x + 2^{-x}} f_R o (1,1) \ f(2) &= rac{2^{2x} - 1}{2^{2x} + 1} \ &\Rightarrow rac{1 - 2^{2x}}{1 + 2^{2x}} \ &rac{1 - \infty}{1 + \infty} \ f'(x) &= rac{2^{2x} \ln 4 (2^{2x} + 1) - 2^{2x} \ln 4}{(2^{2x} + 1)^2} \ &\Rightarrow rac{2 imes 2^{2x} \ln 4}{1} \ &\therefore one - one \end{aligned}$$



onto

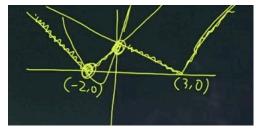
Question: The area of region enclosed by the curves $y = e^x$, $y = |e^x - 1|$ and y - axis is (in sq. units)

Options: (a) 1 (b) 1-ln2 (c) 1+ln2 (d) ln2 Answer: (b) $y = e^x, y = |e^x - 1|$ $\therefore \mathrm{Area} = \int\limits_{1}^{0} e^x - (-e^x + 1) dx$ $=2\int\limits_{-\infty}^{2}e^{x}-\int\limits_{-\infty}^{0}1dx$ $=2[e^x]^0_{-\ln 2}-[x]^0_{-\ln 2}$ $\Rightarrow 2\left(1-rac{1}{2}
ight)-\left[0+\ln2
ight]$ $\Rightarrow 1 - \ln 2$ $e^x = -e^x + 1$ $2e^{n} = 1$ $e^x = \frac{1}{2}$ $x = \ln\left(\frac{1}{2}\right)$ Question: The number of real roots of the equation $x^2 + 3x + 2 = \min(|x+2|, |x+3|)$ **Options:** (a) 0(b) 1 (c) 2 (d) 3

Answer: (2) $x^2 + 3x + 2 = \min(|x+2|, |x-3|)$

Point of intersection = 2 points

 \therefore no. of soln = 2



$$f(x) = \begin{vmatrix} a + \frac{\beta ax}{a} & 1 & b \\ a & 1 + \frac{\beta ax}{a} & b \\ a & 1 & b + \frac{\beta ax}{a} \end{vmatrix},$$
Question:
$$\lim_{x \to 0} f(x) = \lambda + \alpha a + \beta b \operatorname{then}(\lambda + \alpha + \beta)^{2} =$$
Solution:
$$\lim_{x \to 0} f(x) = \begin{vmatrix} a^{i+1} & 1 & b \\ a^{i+1} & 1 & b + i \end{vmatrix}$$

$$= \lambda + \alpha a + \beta b \operatorname{then}(\lambda + \alpha + \beta)^{2} =$$
Solution:
$$= \begin{vmatrix} a^{i+1} & 1 & b \\ a^{i+1} & 1 & b + i \end{vmatrix}$$

$$= (b+1) + a + 1 = 2 + a + b$$

$$(\lambda + a + \beta)^{3} = 4^{2} = 16$$
Question:
Let $\overrightarrow{a} = 3\widehat{i} + 2\widehat{j} - \widehat{k}, \overrightarrow{b} = \overrightarrow{a} \times (\widehat{i} - 2\widehat{j}) \operatorname{and}$
of $\overrightarrow{c} - 2\widehat{i}$ on \overrightarrow{a} is equal to
Options:
(a) $2\sqrt{14}$
(b) $3\sqrt{7}$
(c) $2\sqrt{7}$

$$= (\overline{a} \times (\widehat{i} - 2\widehat{j})) \times \widehat{k}$$

$$= (\overline{a} \cdot \widehat{k}) \cdot (\widehat{i} - 2\widehat{j}) - 0$$
Proj = $-\frac{\widehat{j} \cdot \overline{a}}{|\overline{a}|}$

$$= -i + 2\widehat{j} = -\frac{3}{\sqrt{14}}$$
Question:
If $\alpha > \beta > \gamma > 0$, then find $\cot^{-1}(\frac{1 + \alpha\beta}{\alpha - \beta}) + \cot^{-1}(\frac{1 + \beta\gamma}{\beta - \gamma}) + \cot^{-1}(\frac{1 + \gamma\alpha}{\gamma - \alpha})$
Options:
(a) π
Answer: (a)
Answer: (a)

Vedantu

$$an^{-1}rac{lpha-eta}{1+lphaeta}+ an^{-1}rac{eta-\gamma}{1+eta\gamma}+\pi+ an^{-1}rac{\gamma-lpha}{1+\gammalpha}
onumber \ = an^{-1}lpha- an^{-1}eta+ an^{-1}eta- an^{-1}\gamma+\pi
onumber \ + an^{-1}\gamma- an^{-1}lpha=\pi
onumber \ Pigg(rac{11}{2},lphaigg)$$
 lies on an inside the triangle formed

Question: The point $\sqrt{2}$ / lies on or inside the triangle formed by the lines x + y = 11, x + 2y = 16 and 2x + 3y = 29, then minimum value of 10α is equal to Solution : $y = \frac{11}{2} = 3.5$

