

JEE MAIN 28 JANUARY 2025 SHIFT 1

MATHEMATICS QUESTION PAPER WITH ANSWER KEY

Q.No.	Questions	Answers
1	If $\pi/2 \int_{\pi/2} [96(x^2 + \cos x)/(1 + e^x)] dx = \alpha \pi^3 + \beta$ (where α , β are positive integers), then find the value of $\alpha + \beta$.	100
2	Number of ways to form 5 digit numbers greater than 50000 with the use of digits 0, 1, 2, 3, 4, 5, 6, 7 such that sum of first and last digit is not more than 8, is equal to	5119
3	If the image of the point P(4, 4, 3) in the line $(x - 1)/2 = (y - 2)/1 = (z - 1)/1$ is Q (α , β , γ), then find the value of ($\alpha + \beta + \gamma$).	31/3
4	If $\int_0^x t \cdot f(t)dt = x^2 f(x)$ and $f(2) = 3$, then $f(6)$ equals to	1
5	Let R be a relation such that $R = \{(x, y): x, y \in Z \text{ and } (x + y) \text{ is even}\}$, then the relation R is	Equivalence Relation
6	$\cos(\sin^{-1}(3/5) + \sin^{-1}(5/13) + \sin^{-1}(33/65)) = ?$	0 []
7	The sum of squares of real roots of the equation: $x^2 + 2x - 3 - 4 = 0$ is	<mark>6(2 - √2)</mark>
8	Area bounded by $0 < y < 2 x + 1$ and $y > x^2 + 1$ is (in sq. units)	8/3
₉ D	There are 2 bad oranges mixed with 7 good oranges and 2 oranges are drawn at random. Ket X be the number of bad oranges. The variance of X is	49/162
10	$2a_{n+2} = 5a_{n+1} - 3a_{n'}$ prime where $n = 0, 1, 2$ If $a_0 = 3$ and $a_1 = 4$ then the find the value of $\sum a_k$ from $k = 1$ to 100.	3a ₁₀₀ - 91
11	Let k_1 and k_2 be two randomly selected natural numbers. The probability that $(i)^{k_1} + (i)^{k_2}$ is non-zero is (where $i = \sqrt{-1}$)	3/4
12	In \triangle ABC, A(4sin θ , 4cos θ), B(-2cos θ , 0) and C(2, 2sin θ). If locus of centroid is $(3x - 2)^2 + (3y)^2 = \alpha$, then α is	20
13	Let $E_1 : x^{2}/9 + y^{2}/4 = 1$ be an ellipse and a series of ellipses are drawn in that $E_i + 1$ has the same centre, eccentricity as E_1 and E_{i+1} 's major axis is the minor axis of E_i . If Si be the area of E_i , then ($(5/\pi) \sum S_i$ from $i = 1$ to ∞) is equal to	54