

Br

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

- 1. Which of the following is animal starch?
 - (1) Glycogen
 - (2) Lactose
 - (3) Amylopectin
 - (4) Amylose

Answer (1)

- Sol. Lactose is present in milk.
 - Amylopectin and amylose are part of starch. Glycogen is animal starch.
- 2. Statement 1 : Correct order of ionic radius for Mg²⁺,

Na⁺, O^{2–}, & F[–] is F[–] > O^{2–} > Na⁺ > Mg²⁺

Statement 2 : Correct order of electron gain enthalpy

for 17^{th} group elements follows order Cl > F > Br > I

(Magnitude only)

- (1) Statement-1 & Statement-2 are correct
- (2) Statement-1 is correct Statement-2 is incorrect
- (3) Statement-1 & Statement-2 are incorrect
- (4) Statement-1 is incorrect Statement-2 is correct

Answer (4)

- Sol.: Correct order of ionic radius $O^{2-} > F^- > Na^+ > Mg^{2+}$ Correct order for electron gain enthalpy (Magnitude) Cl > F > Br > l
- Identify the product formed in the following reaction Br

$$\begin{array}{c}
 & & \\ & &$$

Answer (2)

Sol. Aryl halides having strong electron withdrawing group like NO_2 either at the ortho or para position undergo SNAR reaction easily involving carbanion intermediate

- 4. Which of the following is steam volatile
 - (1) Ortho nitrophenol
 - l (2) Para nitrophenol
 - (3) Para aminophenol
- l (4) Para nitroaniline

Answer (1)

- **Sol.** Ortho nitrophenol is steam volatile due to intramolecular H-bonding It's B.P is less. p-nitrophenol, p-amino phenol, paranitro aniline show intermolecular H-bonding
- Consider the following complexes [Mn(CN)₆]^{4−} [Fe(CN)₆]^{4−} [Fe(CN)₆]^{3−} [Co(CN)₆]^{3−}

`	,	•	`	,		`	,	•	•
(1)		(2)		(3)		(4)	

Correct order of CFSE (Δ) will be

- (1) 3 > 4 > 2 > 1 (2) 4 > 3 > 2 > 1
- $(3) \quad 4 > 3 > 1 > 2 \qquad (4) \quad 3 > 4 > 1 > 2$

Answer (2)

- **Sol.** (1) [Mn(CN)₆]⁴⁻, Mn²⁺
 - (2) [Fe(CN)₆]^{4–}, Fe²⁺
 - (3) [Fe(CN)₆]³⁺, Fe³⁺
 - (4) [Co(CN)₆]³⁺, Co³⁺
 - order of CFSE will be 4 > 3 > 2 > 1

Consider the following reaction 6.

> Ο Zn-Hg HCI

Identify the final product P.

Answer (1)

- Sol. Clemmensen's reduction reagent reduces aldehyde and ketone to alkane.
- 7. What is the value of van't Hoff Factor for A₂B, if 30% of A₂B is dissociated?

(1)	1.60	(2)	1.30
(3)	1.50	(4)	1.20

Answer (1)

8.

- Sol. $A_2B \equiv$ \Rightarrow 2A⁺ + B²⁻ α 2α $1-\alpha$ $i = 1 - \alpha + 2\alpha + \alpha = 1 + 2\alpha$ α = 0.30 $i = 1 + 2 \times 0.30 = 1.60$
 - Find the order of the reaction
 - $A + B \rightarrow F$

Nedica if the mechanism of the reaction is as follows: Step 1 : $A + B \rightarrow D$ (slow)

Step 2 : $D \rightarrow C + E$ (fast)

Step 3 : $C + E \rightarrow F$ (fast)

		`	,		
(1)	1			(2) 3	
(3)	2			(4) 4	

Answer (3)

Sol. Since the slowest step is considered as rate determining step.

So, here r = k[A][B]

- JEE (Main)-2025 : Phase-1 (29-01-2025)-Morning
- 9. Match the following List-I with List-II and choose the correct option

	List-I (Complexes)		List-II (Hybridisation)
(A)	[Co(OX)₃] ^{3–}	(i)	sp ³ d ²
(B)	[FeF ₆] ^{3–}	(ii)	d ² sp ³
(C)	[Ni(CO)4]	(iii)	dsp ²
(D)	[PtCl ₄] ^{2–}	(iv)	sp ³
(1)	A-(i), B-(ii), C-(iii), D-(iv)	
(2)	A-(ii), B-(i), C-(iii), D-(iv)		
(3)	A-(i), B-(ii), C-(iv), D-(iii)	

(4) A-(ii), B-(i), C-(iv), D-(iii)

Answer (4)

Sol. :
$$\left[\operatorname{Co}(\operatorname{OX})_{3}\right]^{3^{-}} \Rightarrow \operatorname{Co}^{3^{+}}, (\operatorname{OX}) \text{ act as SFL for Co}^{3^{+}}$$

 $\Rightarrow d^{6} \Rightarrow t_{2g}^{6} eg^{0} \Rightarrow d^{2}sp^{3}$ hybridisation
 $\left[\operatorname{FeF}_{6}\right]^{3^{-}} \Rightarrow \operatorname{Fe}^{3^{+}}, \operatorname{F}^{-} \text{ act as WFL},$
 $\operatorname{Fe}^{3^{+}} \Rightarrow d^{5} \Rightarrow t_{2g}^{3} eg^{2} \Rightarrow sp^{3}d^{2}$ hybridisation.
 $\left[\operatorname{Ni}(\operatorname{CO})_{4}\right] \Rightarrow \operatorname{Ni}(0), \operatorname{CO} \text{ act as SFL}$
 $\operatorname{Ni}(0) \Rightarrow s^{2}d^{8} \Rightarrow d^{10} \Rightarrow sp^{3}$ hybridisation
 $\left[\operatorname{PtCl}_{4}\right]^{2^{-}} \Rightarrow \operatorname{Pt}^{2^{+}} \Rightarrow \operatorname{Cl}^{-} \text{ act as SFL}.$
 $\operatorname{Pt}^{2^{+}} \Rightarrow d^{8} \Rightarrow dsp^{2}$ hybridisation.
10. What is the correct Nernst equation representation for the following cell reaction

1(

$$Mg \rightarrow Mg^{2+} + 2e^{-}$$
$$Ag^{+} + e^{-} \rightarrow Ag$$

(1)
$$E_{cell} = E_{cell}^{\circ} - \frac{RT}{2F} ln \frac{[Mg^{2+}]}{[Ag^{+}]^{2}}$$

(2)
$$E_{cell} = E_{cell}^{\circ} - \frac{RT}{2F} ln \frac{[Ag^+]^2}{[Mg^{2+}]}$$

JEE (Main)-2025 : Phase-1 (29-01-2025)-Morning

(3)
$$E_{cell} = E_{cell}^{\circ} + \frac{RT}{F} ln \frac{[Mg^{2+}]}{[Ag^{+}]^{2}}$$

(4) $E_{cell} = E_{cell}^{\circ} + \frac{RT}{2F} ln \frac{[Ag^{+}]^{2}}{[Mg^{2+}]}$

Answer (1)

Sol.
$$\frac{Mg(s) \to Mg^{2+}(2q) + 2e^{-}}{2Ag^{+}(aq) + 2e^{-} \to 2Ag(s)} \frac{2Ag^{+}(aq) + 2e^{-} \to 2Ag(s)}{Mg(s) + 2Ag^{+}(aq) \to 2Ag(s) + Mg^{2+}(aq)}$$

$$\mathsf{E}_{\mathsf{cell}} = \mathsf{E}_{\mathsf{cell}}^{\circ} - \frac{\mathsf{RT}}{\mathsf{2F}} \mathsf{In} \frac{[\mathsf{Mg}^{2+}]}{[\mathsf{Ag}^{+}]^{2}}$$

11. The correct order of melting point of d-block elements is :

(1)	Fe > Mn	(2)	Tc > Ru
(3)	Os > Re	(4)	Ta > W

Answer (1)

Sol. Melting point order is Fe > Mn, Ru > Tc, Re > Os, W > Ta

12. Consider the following reaction

$$A_2B(g) \iff A_2(g) + \frac{1}{2}B_2(g)$$

If P is total pressure at equilibrium & K_P is equilibrium constant. Then α in terms of K_P & P is (Assume $\alpha << 1$)

(2) $\sqrt[4]{\frac{K_P}{P}}$

(1)
$$\sqrt{\frac{K_p}{p}}$$

(3) $\sqrt{\frac{2K_p}{p}}$

Answer (4)

Sol.
$$A_2B(g) \implies A_2(g) + \frac{1}{2}B_2(g)$$

t

$$= t_{eq} p_0(1-\alpha) \qquad p_0\alpha \qquad p_0\frac{\alpha}{2}$$

$$P = p_0 + p_0 \frac{\alpha}{2}$$
$$P = p_0 \left(1 + \frac{\alpha}{2} \right) \quad \left(P \approx p_0 \right)$$

At equilibrium
$$K_{p} = \frac{\left(p_{A_{2}}\right)\left(\frac{p_{B_{2}}}{p_{A_{2}B}}\right)}{\left(p_{A_{2}B}\right)} = (\alpha << 1)$$

 $k_{p} = \frac{\left(p_{0}\alpha\right)\left(p_{0}\frac{\alpha}{2}\right)^{\frac{1}{2}}}{p_{0}\left(1-\alpha\right)} = k_{p} = \alpha\left(p\frac{\alpha}{2}\right)^{\frac{1}{2}}$
 $\frac{K_{p}}{\frac{1}{p^{2}}} = \frac{\alpha^{3/2}}{2^{1/2}}$
 $\frac{2K_{p}^{2}}{p} = \alpha^{3}$
 $\boxed{\sqrt[3]{\frac{2K_{p}^{2}}{p}} = \alpha}$

13. \wedge_m is linearly dependent to \sqrt{c} for an electrolyte, then molar conductance for the same electrolyte at infinite dilution shows

(4) Sharp decrease

- (1) Small increase (2) Small decrease
- (3) Sharp increase

Answer (1)

- Sol. \wedge_m decreases linearly with \sqrt{c} for strong electrolytes having small –ve slope. It can be extrapolated to \wedge_m^∞ as $c \to 0$.

The molar conductance of the same electrolyte at infinite dilution or as $c \rightarrow 0$ shows small increase.

- 14. Given ionisation enthalpy of element E(g) is 300 kJ/mol and electron gain enthalpy of A, B, C and D gaseous atoms are -320 kJ/mol, -340 kJ/mol, -200 kJ/mol and -250 kJ/mol, then what will be the correct order of ionic nature of compounds?
 - (1) EB > EA > ED > EC (2) EB > EA > EC > ED
 - (3) EC > ED > EA > EB
- 3 (4) EC > ED > EB > EA
 - (3) LC > LD > LA
- D > EA > EB (4) E

- Sol. Since ionic strength depends on IE of electropositive atom; E.G.E. of electronegative element and lattice energy, more the negative value of electron gain enthalpy, more will be ionic nature.
- 15. Graph between de Broglie wavelength (λ_D) and kinetic energy (K) of an electron is

Answer (2)

Sol. de Broglie wavelength (λ_D) of an electron of mass (m), moving with velocity (v) is given by

$$\lambda_D = \frac{h}{mv}$$

Where h is planck's constant.

Kinetic energy (K) = $\frac{1}{2}$ mv² $mv = \sqrt{2mK}$ $\lambda_D = \frac{h}{\sqrt{2mK}}$ $\frac{1}{K} = \frac{2m\lambda_D^2}{h^2}$ Plot of $\frac{1}{K}$ vs λ_D is <u>1</u> К

16. Which of the following ions is strongest oxidising agent

Given : $E_{AI^{3+}/AI}^{\circ} = -2.7V$ $E^{\circ}_{CU^{2+}/CU} = 0.34V$ $E_{Ph^{4+}/Ph^{2+}}^{\circ} = 1.8V$ $E^{\circ}_{\tau_i^{3+}/\tau_i^{2+}} = -0.37 \text{ V}$ JEE (Main)-2025 : Phase-1 (29-01-2025)-Morning

(1)	Al ³⁺	(2)	Cu ²⁺
(3)	Pb ⁴⁺	(4)	Ti ³⁺

Answer (3)

Sol. Reduction potential of $Pb^{4+} \rightarrow Pb^{2+}$ is most positive, Hence Pb4+ is strongest oxidising agent.

17. Total number of nucleophiles among the following are Ph-SH, OH^{-} , $CH_2 = CH_2$, $\rightarrow N - CH_3$, H_3O^{+} ,

$$CH_3 - C - CH_3 \qquad S < CH_3 O \qquad CH_3 \qquad (2) 6 (3) 7 \qquad (4) 4$$

Answer (2)

So

19

- Sol. Species having atom containing lone pair available for donation can act as nucleophile
- Radius of 1st orbit of hydrogen atom is a₀ Å, then find de-18. Broglie wavelength of 2nd orbit of hydrogen atom.

(1)
$$4\pi a_0$$

(2) $\frac{4}{\pi a_0}$
(3) $8\pi a_0$
(4) $2\pi a_0$
Answer (1)
Sol. $r_n = a_0 \frac{n^2}{2}$
for $n = 1, 2 = 1$
 $r_1 = a_0$
 $r_2 = a_0 \frac{4}{1} = 4a_0$
 $2\pi r_n = n\lambda$
 $\lambda = \frac{2\pi r_2}{2} = \frac{2\pi \times 4a_0}{2} = 4\pi a_0$
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

JEE (Main)-2025 : Phase-1 (29-01-2025)-Morning

21. Calculate the total number of sigma and π -bonds in the given molecule?

$$\sim$$

Answer (15)

Sol.

Number of sigma bonds = 11 σ Number of π -bonds = 4 π

Total = 15

22. Chromite ore + $Na_2CO_3 + O_2 \longrightarrow$ Insoluble product

Calculate the molar mass of insoluble product formed. (Given : Molar mass of Cr = 52 g/mol, Na = 23 g/mol, Fe = 56 g/mol, 0 = 16 g/mol)

Answer (160)

Sol. $\rightarrow 8Na_2CrO_4 + 2Fe_2O_3$ 4FeCr₂O₄ + 8Na₂CO₃ + 7O₂ + 800, (Chromite ore) Insoluble product

Molar mass of Fe₂O₃

$$\Rightarrow$$
 2(56) + 3(16)

 \Rightarrow 160

23. Consider the following amines

1 gram of most basic compound reacts with x mg of HCl, calculate value of x.

Answer (341)

Sol. Most basic compound is ĊH₂NH₃CĪ CH,NH,

$$\bigcirc + HCI \longrightarrow \bigcirc$$

$$\frac{1}{107} \text{mol} \quad \frac{1}{107} \text{mol}$$

mass of HCl required to react with Benzyl amine

CH2NH2

$$=\frac{1}{107}\times 36.5\,\mathrm{g}$$

= 0.341 g = 341 mg

24. Consider the following reaction

$$(A) \xrightarrow{CH_2OH}_{I} (B) \xrightarrow{(i) CH_3MgBr}_{(ii) H_3O^+} (C) \xrightarrow{NaBH_4}_{I_2O} (D)$$

Find the mass of final product(D) formed in g

Molar mass of D = 130 g mol⁻¹

Mass of 0.1 mol of (D) formed = 13g

25.