PREVIEW QUESTION BANK

Module Name : FISHERIES SCIENCES-ENG Exam Date : 14-Jul-2023 Batch : 10:00-12:00

.	nt Question ID		Question Body and Alternatives Marks	Ne N	18
ctive Qu	uestion				
3201	Match List-I with List	-11		4.0	
	List-I	List-II			
	(Reservoir/dam)	(River)			
	(A). Idukki	(I). Beas			
	(B). Nagarjuna Sagar	(II). Periyar			
	(C). Jayakwadi	(III). Krishna			
	(D). Pong	(IV). Godavari			
	Choose the correct a	nswer from the options give	ven below:		
	1. (A) - (I), (B) - (IV				
), (C) - (I), (D) - (IV)			
		(C) - (IV), (D) - (III)			
	4. (A) - (II), (B) - (II), (C) - (IV), (D) - (I)			
	A1:1				
	A2:2				
	A3:3				
	A4:4				
	<u> </u>				
ctive Qu 3202	Jestion			4.0	
0202	Piaractus brachypomu	s is native to			
	1. North America				
	2. South America				
	3. China 4. Africa				
	T. Allieu				
	A1:1				
	A2:2				
	A3:3				
	A4:4				
ctive Qu	Jestion				
3203				4.0	T

		Which category of lobsters forms a major fishery along the Indian coast?		
		1. Sand lobsters		
		2. Spiny lobsters		
		Cape lobsters True lobsters		
		4. The lobsters		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		N7.7		
Ob.:-				
4	ctive Ques	stion	4.0	1.00
•	020 :	Arrange the following marine zones according to their distance from the shoreline to the seaward beginning from the nearest to the farthest		
		(A). High sea		
		(B). Contiguous zone		
		(C). Territorial water		
		(D). Exclusive Economic Zone		
		Choose the correct answer from the options given below:		
		1. (A), (C), (B), (D).		
		2. (C), (A), (B), (D).		
		3. (C), (B), (D), (A). 4. (D), (C), (B), (A).		
		4. (<i>O</i>), (<i>C</i>), (<i>B</i>), (<i>A</i>).		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		N7.7		
Ohio	ctive Que	ntion .		<u> </u>
овје 5	3205	stion	4.0	1.00
		The most dominant gear in Hooghly-Matlah estuary		
		1. Trap		
		2. Bag net		
		3. Lampara net		
		4. Drag net		
		A1:1		
		A2:2		

		A3:3		
		A4:4		
	ctive Que	stion		
6	3206	Which of the following has the meaning 'harbour wave'?	4.0	1.00
		1. Tsunami		
		2. Hurricane		
		3. Cyclone		
		4. Seiche		
		A1:1		
		AI.I		
		A2:2		
		A3:3		
		A4:4		
		A4.4		
Oh:-	-4:	at		
Овје 7	ctive Ques	tion	4.0	1.00
		The presence of 5 spines in the first dorsal fin and a large mouth with fang-like teeth are the striking taxonomic features of		
		Sphyrnidae Sphyraenidae		
		3. Scombridae		
		4. Mugilidae		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje 8	ctive Ques	stion	4.0	1.00
		Identify the species given in the picture		
		(All production and section 2)		
		1. Basking shark		
		2. Blue whale		
		3. Tiger shark		
		4. Whale shark		
		A1:1		

		A2:2			
		A3:3			
		A4:4			
Obie	ctive Que	stion			
9	3209	Stron		4.0	1.00
		Match List-I with List-	II		
		List-I	List-II		
		(Common name)	(Group)		
		(A). Mantis shrimp	(I). Mysid		
		(B). Clam shrimp	(II). Stomatopod		
		(C). Seed shrimp	(III). Branchiopod		
		(D). Opossum shrimp	(IV). Ostracod		
		Choose the correct ar	nswer from the options given below:		
		1. (A) - (I), (B) - (III)			
		2. (A) - (II), (B) - (IV			
		3. (A) - (II), (B) - (III)			
		4. (A) - (III), (B) - (I\), (C) - (I), (D) - (II)		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
	ctive Que	stion			14.00
10	3210	What is the vernacular	name of the fringed-lipped peninsula carp?	4.0	1.00
			name of the imiged appearance and		
		 Labeo kontius Labeo fimbriatus 			
		3. Labeo dyocheilus			
		4. Labeo dussumier			
		A1:1			
		A2:2			
		A3:3			
		A4:4			
	ctive Que	stion		4.0	1.00
11	3211			4.0	1.00

		Thin-walled, lamellate structures present on the coxal segment of each maxilleped in a typical prawn are called		
		1. Protopodites		
		2. Exopodites		
		3. Endopodites		
		4. Epipodites		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obie	ctive Que	stion		
	3212		4.0	1.00
		Species given in the picture belongs to which group of molluscs?		
		Miller		
		1. Gastropod		
		2. Monoplacophora		
		3. Polyplacophora		
		4. Cephalopod		
		A1:1		
		A2:2		
		A3:3		
		AA. A		
		A4:4		
	ctive Que	stion State of the	4.0	1.00
13	3213		4.0	1.00

Identify the part marked as 'C' in the given picture? 1. Weberian ossicles 2. Pneumatic duct 3. Wolffian duct 4. Pyloric caeca A1:1 A2:2 A3:3 A4:4 Objective Question 14 3214 4.0 1.00 Which of the following best explains the cleavage type in a typical teleost? 1. Meroblastic, Telolecithal, Discoidal 2. Holoblastic, Telolecithal, Bilateral 3. Meroblastic, Centrolecithal, Discoidal 4. Holoblastic, Centrolecithal, Bilateral A1:1 A2:2 A3:3 A4:4 Objective Question 15 3215 4.0 1.00 Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). Assertion (A): Marine elasmobranchs are slightly hyperosmotic to their environment. Reason (R): Marine elasmobranchs have a considerable amount of urea and trimethylamine in their plasma. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both (A) and (R) are correct and (R) is the correct explanation of (A). 2. Both (A) and (R) are correct but (R) is NOT the correct explanation of (A). 3. (A) is correct but (R) is not correct. 4. (A) is not correct but (R) is correct. A1:1

		A2:2		
		A3:3		
		A4:4		
Obje	ctive Que	stion	1	1
16	3216	Sensory receptors in lateral line system of fishes are	4.0	1.00
		1. Cyanocytes		
		2. Neuromasts		
		3. Chloride cells		
		4. Statocysts		
		A1:1		
		A2:2		
		A3:3		
		A3.3		
		A4:4		
		A4.4		
	ctive Que 3217	stion	4.0	1.00
1/	3217	In fisher humanisin is correted by	4.0	1.00
		In fishes, hypocalcin is secreted by		
		1. Thyroid gland		
		2. Ultimobranchial bodies		
		3. Pancreas		
		4. Corpuscles of Stannius		
		A1:1		
		A2:2		
		A3:3		
		A4.4		
		A4:4		
	ctive Que	stion		10.00
18	3218		4.0	1.00

		A2:2		
		A3:3		
		A4:4		
Ohia	ativa Ova			<u> </u>
21	ctive Que	SIUII	4.0	1.00
		Which one of the following is NOT an ecological adaptation of a typical coldwater fish?		
		1. Clinging and burrowing		
		2. Reduced power of locomotion		
		Narrow gill opening Modified lips for feeding on periphyton		
		4. Modified tips for feeding on periphyton		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Que	stion		
22	3222		4.0	1.00
		A broad class of computational algorithms that rely on repeated random sampling to obtain numerical results		
		1. Monte Carlo method		
		2. Buffon's method		
		3. Cushing method		
		4. Munro method		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Que	stion	4.0	1.00
23	3223	Given below are two statements:	4.0	1.00
		Statement (I): Long-living fishes approach asymptotic length slowly.		
		Statement (II): Fishes with high longevity will generally have a high natural mortality rate. In light of the above statements, choose the most appropriate answer from the options given below.		
		Both Statement (I) and Statement (II) are false.		
		Both Statement (I) and Statement (II) are false. Statement (I) is true but Statement (II) is false.		
		4. Statement (I) is false but Statement (II) is true.		

		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Que	stion		
	3224	Which model is one of the age-structured models?	4.0	1.00
		1. Relative response model		
		2. Surplus production model		
		3. Virgin stock model		
		4. Yield per recruit model		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohie	ctive Que	tion .		
	3225		4.0	1.00
		Which of the following relationship gives an asymptotic curve?		
		1. Fishing effort and yield		
		2. Age and length of fish		
		3. Fishing effort and CPUE		
		4. Cushing's fish stock recruitment relationship		
		Ma . a		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Ques	stion		-
	3226		4.0	1.00

Given below are two statements: Statement (I): In the reciculatory aquaculture system, requirement of water is minimal. Statement (II): In the reciculatory aquaculture system, water pass through biological filters. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct. A1:1 A2:2 A3:3 A4:4 Objective Question 27 3227 4.0 1.00 In the aquaponics system, which of the following fishes are suitable for culture? 1. Silver carp 2. Catla 3. Tilapia 4. Pacu A1:1 A2:2 A3:3 A4:4 Objective Question 4.0 1.00 28 3228 Given below are two statements: Statement (I): Gold fish eggs are adhesive. Statement (II): Common carp eggs are adhesive. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct. A1:1 A2:2

		A3:3		
		A4:4		
Obje	ctive Ques	stion		
29	3229		4.0	1.00
		Given below are two statements:		
		Statement (I): African catfish is a fast growing one and recommended for culture in India.		
		Statement (II): Pangasius catfish is a suitable species for freshwater aquaculture.		
		In light of the above statements, choose the most appropriate answer from the options given below.		
		1. Both Statement (I) and Statement (II) are correct.		
		2. Both Statement (I) and Statement (II) are incorrect.		
		3. Statement (I) is correct but Statement (II) is incorrect.		
		4. Statement (I) is incorrect but Statement (II) is correct.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Que	stion		
30	3230		4.0	1.00
		Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).		
		Assertion (A): In the production of extruded feed manufacture, high temperature and high pressure are used.		
		Reason (R): In the extruded feed production, small air pockets are formed inside pellets and they float in the water.		
		In light of the above statements, choose the correct answer from the options given below.		
		1. Both (A) and (R) are true and (R) is the correct explanation of (A).		
		 Both (A) and (R) are true but (R) is NOT the correct explanation of (A). (A) is true but (R) is false. 		
		4. (A) is false but (R) is true.		
		A1:1		
		AD 2		
		A2:2		
		A3:3		
		A4:4		
	ctive Ques	tion	/1 N	1.00
21	3231		4.0	1.00

List-I	List-II	
Feed ingredients	Used as a source of	
(A). Groundnut cake	(I). Binder	
(B). Tapioca floor	(II). Protein	
(C). Ethoxyquin	(III). Carbohydrate	
(D). Rice bran	(IV). Antioxidant	

Choose the correct answer from the options given below:

- 1. (A) (I), (B) (II), (C) (III), (D) (IV)
- 2. (A) (I), (B) (III), (C) (II), (D) (IV)
- 3. (A) (II), (B) (I), (C) (IV), (D) (III)
- 4. (A) (III), (B) (IV), (C) (I), (D) (II)
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

22	3232

List-I	List-II
Shellfish	Larval stage
(A). Crab	(I). Phyllosoma
(B). Lobster	(II). Zoea
(C). Scampi	(III). Glochidium
(D). Freshwater mussel	(IV). Megalopa

Choose the correct answer from the options given below:

- 1. (A) (I), (B) (II), (C) (III), (D) (IV)
- 2. (A) (IV), (B) (I), (C) (II), (D) (III)
- 3. (A) (I), (B) (II), (C) (IV), (D) (III)
- 4. (A) (III), (B) (IV), (C) (I), (D) (II)
- A1:1
- A2:2
- A3:3
- A4:4

4.0 1.00

Objective Question							
33	3	3233		4.0	1.00		
			In the induced breeding of Indian major carps, which of the follwing statements are correct?				
			(A). Pituitary glands are preferred over Ovaprim.				
			(B). Ovaprim is ready to use liquid form available in 10 ml vial, has consistency and given reliable results.				
			(C). Ovatide is an indigenous, cost effective hormonal formulation.				
			(D). GnRH is a steroidal hormone belongs to class of substances called peptides.				
			Choose the correct answer from the options given below:				
			1. (A), (B), (C), (D).				
			2. (A) and (D) only				
			3. (C) and (D) only				
			4. (B) and (C) only				
			A1:1				
			AL. I				
			A2:2				
			A3:3				
			A4:4				
0		ctive Ques	stion				
34	4	3234		4.0	1.00		
			The scientist/s who developed the hypophysation technique for breeding of Indian major carps for the first time in India ?				
			1. S L Hora				
			2. Alikunhi K H and H Choudhri				
			3. T V R Pillay				
			4. V G Jhingran				
			4. V G mingran				
			A1:1				
			A2:2				
			A3:3				
			A4:4				
			74.4				
0	bier	tive Ques	stion		1		
		3235		4.0	1.00		
"			What is the world latest fish production (FAO,2022) ?	-			
			The same interest that production (trio) avec)				
			1. 214 mmt				
			2. 224 mmt				
			3. 189 mmt				
			4. 197 mmt				
			A1.1				
			A1:1				
			A2:2				

		A3:3		
		A4:4		
		A4.4		
	ctive Que	stion		
36	3236		4.0	1.00
		World latest aquaculture production (FAO, 2022) is		
		1. 124 mmt		
		2. 224 mmt		
		3. 98.5 mmt		
		4. 87.5 mmt		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Que	stion		
37	3237		4.0	1.00
		What is the ideal plant crop for aquaponics system?		
		4.0		
		1. Banana 2. Spinach		
		3. Potato		
		4. Papaya		
		· · · · · · · · · · · · · · · · · · ·		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohie	ctive Que	stion]	1
38	3238		4.0	1.00
		In the breeding of Indian major carps on a large scale, which of the following is more commonly used?		
		1 Classical bathers		
		Glass jar hatchery Vertical hatchery		
		3. Cicular hatchery		
		4. Hapa method		
		A1:1		
		A2:2		
		A3:3		
		A4:4		

	ctive Que	stion		
	3239	In the fish feed storage, which of the following is more common type of spoilage? 1. Bacteria 2. Viruses 3. Worms 4. Moulds A1:1 A2:2 A3:3 A4:4	4.0	1.00
	ctive Que	stion	4.0	1.00
	32-10	Which is the predominant species cultured presently in the brackishwater aquaculture in India ? 1. Tiger shrimp 2. Banana prawn 3. Indian white shrimp 4. Whiteleg shrimp A1:1 A2:2 A3:3 A4:4		
Ohie	ctive Que	stion		
41	3241	What is most important factor in the biofloc system of culture ? 1. Carbon 2. Phosphorus 3. Potash 4. Magnesium A1:1 A2:2 A3:3	4.0	1.00
	ctive Que	SUUI	4.0	1.00
II	· -			'

		What is the preferred fish food oganisms for spawn of Indian major carps ? 1. Ostracode 2. Rotifers 3. Cladocerans 4. Isopods A1:1 A2:2 A3:3 A4:4		
Ohio	ctive Ques	tion .		1
	3243	Predatory and weed fishes in the pond can be controlled by 1. Mahua oil cake 2. Kerosine 3. Diesel 4. Cotton seed cake A1:1 A2:2 A3:3 A4:4	4.0	1.00
Obje	ctive Ques	tion .		
	3244	Highest fish production carps in experiemental conditions was obtained by employing 1. Three species 2. Four species 3. Two species 4. Six species A1:1 A2:2 A3:3 A4:4	4.0	1.00
Ohio	ctive Ques	tion .		
	3245	NIUII	4 O	1.00
70	J27J		7.0	1.00

		Given below are two statements:		
		Statement (I): When organic fertilizers are used zooplanakton will develop through saphrophytic food chain.		
		Statement (II): When inorganic fertilizers are used zooplanakton will develop through saphrophytic food chain.		
		In light of the above statements, choose the <i>most appropriate</i> answer from the options given below.		
		1. Both Statement (I) and Statement (II) are correct.		
		2. Both Statement (I) and Statement (II) are incorrect.		
		3. Statement (I) is correct but Statement (II) is incorrect.		
		4. Statement (I) is incorrect but Statement (II) is correct.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Que	stion		4.00
46	3246	The book : "Aquaculture: Principles and Practices" was written by	4.0	1.00
		1. V G Jhingran		
		2. Ayyappan S		
		3. T V R Pillay		
		4. S L Hora		
		A1:1		
		A2:2		
		n2.2		
		A3:3		
		A4:4		
	ctive Que	stion	4.0	1.00
47	3247		4.0	1.00
		Which of the follwing fish is a protandrous hermaphrodite ?		
		1. Tilapia		
		2. Asian Seabass		
		3. Catla		
		4. Cobia		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		T. T.		

Objective Question					
48	3248		4.0	1.00	
		In the manufacture of extruded fish feeds, which of the following statements are true?			
		(A). High temperature, high pressure and high moisture are used.			
		(B). Low temperature, high pressure and high moisture are used.			
		(C). Low moisture, low pressure and high temperature are used.			
		(D). Low pressure, low temperature and low moisture are used.			
		Choose the correct answer from the options given below:			
		1. (A) only			
		2. (A) and (B) only			
		3. (B) and (C) only			
		4. (C) and (D) only			
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obj	ective Que	etion			
49	3249		4.0	1.00	
		Which of the following fish is protogynous hermaphrodite ?			
		1. Barramundi			
		2. Tilapia			
		3. Grouper			
		4. Pampano			
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obj	ective Que	stion			
	3250		4.0	1.00	
		In Macrobrachium rosenbergii males, how many common morphotypes are observed?			
		1. Two			
		2. One			
		3. Six			
		4. Three			
		A1:1			
		A2:2			

		A3:3		
		A4:4		
Obie	ctive Que	stion		
	3251		4.0	1.00
		Which of the following is a secondary air pollutant?		
		1. Ozone		
		2. Carbon dioxide		
		3. Carbon monoxide		
		4. Sulphur dioxide		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohie	ctive Que	stion		<u> </u>
	3252		4.0	1.00
		Immediate harmful effects on human body parts due to Fluoride pollution		
		1. Kidney		
		2. Brain		
		3. Heart 4. Teeth		
		4. leetii		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohic	ctive Que	rtion]
53	3253	DAIOH	4.0	1.00
		First notification of EIA in India came in the year		
		1. 1986		
		2. 1994 3. 1974		
		4. 2006		
		4. 2000		
		A1:1		
		A2:2		
		A3:3		

		A4:4		
Ohie	ctive Que	rtion		
	3254	3001	4.0	1.00
34	3234	A concentration of 0.1 % is equivalent to how many parts per million (ppm)?	4.0	1.00
		1. 1 ppm		
		2. 10 ppm		
		3. 100 ppm		
		4. 1000 ppm		
		A1:1		
		AI.I		
		A2:2		
		A3:3		
		A4:4		
Ohio	ctive Que	ntion.		
55	3255	SIUII	4 0	1.00
	3233	Species that serve as early warnings of environmental damage are called		1.00
		species that serve as early warnings of environmental damage are called		
		1. Keystone species		
		2. Native species		
		3. Specialist species		
		4. Indicator species		
		A1:1		
		A2:2		
		AZ.Z		
		A3:3		
		A4:4		
Ohic	ctive Que	ction		
	3256	3101	4.0	1.00
		Which of the following genus of bacterium is not found in freshwater?		
		Which of the following genus of bacterium is not found in nestinater.		
		1. Pseudomonas		
		2. Flavobacterium		
		3. Aeromonas		
		4. Vibrio		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohio	ctive Que	rtion		

57	3257		4.0	1.00
		Lakes, having uniform density and temperature regardless of depth in a particular period of the year, are called		
		takes, flaving difficill density and temperature regardless of depth in a particular period of the year, are called		
		1. Polymictic Lakes		
		2. Dimictic Lakes		
		3. Monomictic Lakes		
		4. Holomictic Lakes		
		A1:1		
		A2:2		
		AZ.Z		
		A3:3		
		A4:4		
		717.7		
Obje	ctive Que	stion		
58	3258		4.0	1.00
		Which of the following is not a biofertilizer?		
		Which of the following is not a biolertilizer:		
		1. Salmonella		
		2. Rhizobium		
		3. Nostoc		
		4. Azolla		
		4. AZOII.		
		A1:1		
		A2:2		
		n2.2		
		A3:3		
		A4:4		
Obje	ctive Que	stion		
	3259		4.0	1.00
		Which of the following does not cause the permanent hardness in water?		
		The following does not educe the permanent hardness in vaccin		
		1. Nitrite		
		2. Nitrates		
		3. Chlorides		
		4. Bicarbonates		
		T. Died borides		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Que	stion		
60	3260		4.0	1.00

Ohie	ctive Ques	Transparency of water is measured by 1. Secchi disc 2. Salinometer 3. Hydrometer 4. Anemometer A1:1 A2:2 A3:3 A4:4		
	3261		4.0	1.00
01		Methemoglobinemia disease is caused by 1. Lead levels in ground water 2. Mercury levels in ground water 3. Nitrate in ground water 4. Iron in ground water	4.0	1.00
		A2:2 A3:3 A4:4		
	ctive Ques	tion		
62	3262	Interspecific relationship where one species suffer and other species experience no effect is 1. Commensalism 2. Ammensalism 3. Mutualism 4. Predation A1:1 A2:2 A3:3 A4:4	4.0	1.00
Obje	ctive Ques	tion		
	3263		4.0	1.00

		Kyoto Protocol is related to		
		1. Greenhouse gas		
		2. Pesticide pollution		
		3. Water Pollution		
		4. Ozone depletion		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohie	ctive Que	stion		<u> </u>
	3264		4.0	1.00
		Gulf stream is which type of current?		
		1. Cold water current		
		2. Warm water current		
		3. Bottom current		
		4. Inshore current		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		A4.4		
	ctive Que	stion	4.0	14.00
65	3265	Tanin yang gaible for Doorly die absellfieb ye in gains in	4.0	1.00
		Toxin responsible for Paralytic shellfish poisoning is		
		1. Saxitoxin		
		2. Brevetoxin		
		3. Okadaic acid		
		4. Domoic acid		
		A1:1		
		A1.1		
		A2:2		
		A3:3		
		A4:4		
Ohio	ctive Que	stion]][
	3266	ANOTE CONTROL OF THE PROPERTY	4.0	1.00

		Number of 'Biodiversity Hotspots' in the Word is		
		1. 32		
		2. 36		
		3. 24		
		4.96		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Ques	stion		
67	3267		4.0	1.00
		Which of the following light can penetrate deepest in the ocean water?		
		1. Red		
		2. Blue		
		3. Green		
		4. Yellow		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Ques	tion		16.00
68	3268		4.0	1.00
		Highest point of wave is called		
		1. Crest		
		2. Trough		
		3. Current		
		4. Heave		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Ques	stion		
	3269		4.0	1.00

		Which one of the following is formed due to river meandering? 1. Bog 2. Peat 3. Ox-bow lakes 4. Salt marsh A1:1 A2:2 A3:3 A4:4		
Obje	ctive Ques	tion		
70	3270	Energy flow in ecosystem is given by: 1. Haeckel 2. Odum 3. Tansely 4. Victor Hensen A1:1 A2:2 A3:3 A4:4	4.0	1.00
	ctive Ques	tion		
	3271	Cytopathic effect in a host cell is due to result of 1. Fungal infection 2. Bacterial infection 3. Viral infection 4. Parasitic infestation A1:1 A2:2 A3:3 A4:4	4.0	1.00
Ohio	ctive Oues	tion.		
	ctive Ques		4.0	1.00
12	32/2		4.0	1.00

		Any agents added to vaccines to stimulate the immune system and enhance the response without having an antigenic effect by itself are called 1. Antigens 2. Allergens 3. Adjuvants 4. Carriers A1:1 A2:2 A3:3 A4:4		
	ctive Que	stion		
	3273	Headquarter of Office of International Epizootics is located in which country? 1. Thailand 2. Malaysia 3. France 4. USA A1:1 A2:2 A3:3 A4:4	4.0	1.00
Obje	ctive Que	stion		
74 Objec	3274	Complete dissociation of chromatin material in the nucleus is termed as 1. Karyorhexis 2. Karyolysis 3. Pyknosis 4. Nucleolysis A1:1 A2:2 A3:3 A4:4		1.00
	3275		4.0	1.00

		Constant presence of a disease or infectious agent within a given geographic area or population group is termed as 1. Epizootic 2. Enzootic 3. Panzootic 4. Zoonotic A1:1 A2:2 A3:3 A4:4		
Obie	ctive Que	stion	<u> </u>	1
	3276	3001	4.0	1.00
	32,0	Immunoglobulin's function is		
		Vasodilation Chemotaxis		
		Activation of complement system		
		4. Inflammation		
		A1:1		
		A2:2		
		42.2		
		A3:3		
		A4:4		
		N7.7		
01:		··		<u> </u>
	ctive Que	stion	4.0	1.00
,,	3277	The process of acute inflammation is initiated by the action of	1.0	1.00
		1. Vasoactive amines		
		Complement Thromboplastin		
		4. Antibody		
		A1:1		
		A2:2		
		A3:3		
		76.5		
		A4:4		
Ohio	ctive Que	stion][
	3278		4.0	1.00

		The only anesthetic currently approved by the USFDA for use on food fish is 1. MS-222 2. Benzocaine 3. Quinaldine 4. Clove oil A1:1 A2:2 A3:3 A4:4		
	ctive Que	stion		
79	3279	The process of weakening a pathogen for preparing a vaccine is called 1. Immunization 2. Attenuation 3. Vaccination 4. Virulence reduction A1:1 A2:2 A3:3 A4:4	4.0	1.00
Obje	ctive Que	stion		
	3280	The antibiotic permitted for use in aquaculture is, 1. Ciprofloxacin 2. Florfenicol 3. Amoxicillin 4. Ampicillin A1:1 A2:2 A3:3 A4:4	4.0	1.00
Ohio	ctive O	rtion][
	ctive Que	STION	4 n	1.00
01	J201		7.0	

Obj	ective Que	Lactic acid fish fermented product is 1. Ngapi 2. Nam-pla 3. Patis 4. Pla-ra A1:1 A2:2 A3:3 A4:4		
	3282		4.0	1.00
	5202	What is the recommended dietary allowance (RDA) of EPA and DHA?		
		1. 1g 2. 2g		
		3. 3g		
		4. 4g		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Que	stion		
83	3283		4.0	1.00
		Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).		
		Assertion (A): Isinglass is prepared from swimm bladder.		
		Reason (R): It is a form of collagen used mainly for the clarification or fining of some beer and wine.		
		In light of the above statements, choose the <i>correct</i> answer from the options given below.		
		1. Both (A) and (R) are true and (R) is the correct explanation of (A).		
		2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).		
		3. (A) is true but (R) is false.		
		4. (A) is false but (R) is true.		
		A1:1		
		A2:2		
		A3:3		
		A3.3		
		A4:4		

Obje	ective Que	stion				
84	3284				4.0	1.00
		Given below are two sta	tements, one is labelled as Ass	sertion (A) and other one labelled as Reason (R).		
		Assertion (A) : In trawl n	et, old pieces of webbing know	vn as false belly.		
		Reason (R) : They are at	ached below the belly to act a	s chaffing gear.		
		In light of the above st	tements, choose the correct ar	nswer from the options given below.		
		1. Both (A) and (R) a	e true and (R) is the correct ex	planation of (A).		
			e true but (R) is NOT the corre	ct explanation of (A).		
		3. (A) is true but (R)				
		4. (A) is false but (R)	is true.			
		A1:1				
		A2:2				
		A2.2				
		A3:3				
		A4:4				
	ective Que	stion			4.0	1 00
85	3285	Match List-I with List-II			4.0	1.00
		through rading to empress and screening of the constitution				
		List-I	List-II			
		Fishing gear floats	Buoyancy			
		(A). Sponge plastic	(I). 650g/1000cc			
		(B). Thermocol	(II). 825g/1000cc			
		(C). Cork	(III). 900g/1000cc			
		(D). Wood	(IV). 800-860g/1000cc			
		Choose the correct ans	wer from the options given bel	low:		
		1. (A) - (I), (B) - (II), (G	C) - (III), (D) - (IV)			
		2. (A) - (IV), (B) - (III),				
		3. (A) - (I), (B) - (II), (C				
		4. (A) - (III), (B) - (IV),	(C) - (I), (D) - (II)			
		A1 . 1				
		A1:1				
		A2:2				
		A3:3				
		A4:4				
Oh:	octive Out	ction				
	3286	SUUII			4.0	1.00
	5255					

Obje 88	3288	stion	4.0	1.00
		A4:4		
		A3:3		
		A2:2		
		4. Morganella morganii A1:1		
		2. Vibrio parahaemolyticus 3. Staphylococcus aureus 4. Massacella massaciii		
		Which is the indigenous pathogenic bacteria in seafood? 1. Enterococcus faecalis		
	3287		4.0	1.00
Obie	ctive Ques	A4:4		
		A3:3		
		A2:2		
		A1:1		
		 Both (A) and (R) are true and (R) is the correct explanation of (A). Both (A) and (R) are true but (R) is NOT the correct explanation of (A). (A) is true but (R) is false. (A) is false but (R) is true. 		
		In light of the above statements, choose the <i>correct</i> answer from the options given below.		
		Assertion (A): Trammel net is used to entangle the fins, scales, teeth etc. of fishes. Reason (R): It consists of two layers, one with larger meshes outside and another with smaller meshes inside.		
		Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).		

Match I	list-	with	List-II

List-I	List-II
Fish by-products	Body parts
(A). Fish glue	(I). Epidermal layer
(B). Fish maws	(II). Skin and bones
(C). Gelatin	(III). Air bladder
(D). Pearl essence	(IV). Fish head

Choose the correct answer from the options given below:

- 1. (A) (I), (B) (II), (C) (III), (D) (IV)
- 2. (A) (III), (B) (II), (C) (IV), (D) (I)
- 3. (A) (I), (B) (II), (C) (IV), (D) (III)
- 4. (A) (IV), (B) (III), (C) (II), (D) (I)
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

89 3289 Given below are two statements:

4.0 1.00

Statement I: Splicing is a method of joining ends of two ropes togethter or making an eye at the end of the rope.

Statement II: Eye splicing is a method of joining two ropes without increasing the thickness over the area of splice.

In light of the above statements, choose the correct answer from the options given below.

- 1. Both statement (I) and statement (II) are correct.
- 2. Both statement (I) and statement (II) are incorrect.
- 3. Statement (I) is correct, but statement (II) is incorrect.
- 4. Statement (I) is incorrect, but statement (II) is correct.
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

90	3290	4.0	,

Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). Assertion (A): The Codex Alimentarius Commission was established in the year 1963 by the Food and Agriculture Organization (FAO) and World Health Organization (WHO) of the United Nations . Reason (R): It was developed to harmonized international food standards, guidelines and codes of practice to protect the health of consumers and ensure fair trade practices in the food trade. In light of the above statements, choose the correct answer from the options given below. 1. Both (A) and (R) are true and (R) is the correct explanation of (A). 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A). 3. (A) is true but (R) is false. 4. (A) is false but (R) is true. A1:1 A2:2 A3:3 A4:4 Objective Question 91 3291 4.0 1.00 Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). Assertion (A): Colombo curing is the fish pickling process practiced in the South Canara and Malabar regions along the West Coast of the India. Reason (R): Psidium guajava fruit is very acidic in nature which is used for Colombo pickling of fish. In light of the above statements, choose the correct answer from the options given below. 1. Both (A) and (R) are true and (R) is the correct explanation of (A). 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A). 3. (A) is true but (R) is false. 4. (A) is false but (R) is true. A1:1 A2:2 A3:3 A4:4 Objective Question 92 3292 4.0 1.00 Histamine producing bacteria in iced fish is 1. Photobacterium

file:///C:/Users/ADMINI~1/AppData/Local/Temp/Rar\$EXa4160.20825/185 14 B1 Live FISHERII	ESSCIENCE 1-120 html

Staphylococcus
 Salmonella
 Shewanella

A1:1

A2:2	
Objective Question 93 3293 Match List-I with List-II	
Objective Question 93 3293 Match List-I with List-II	
Objective Question 93 3293 Match List-I with List-II	
93 3293 Match List-I with List-II	4.0
93 3293 Match List-I with List-II	4.0
	4.0
List-I List-II	
Fishing gear Type of water body	
(A). Pole and line (I). Lake	
(B). Long/Dor (II). Backwater	
(C). Kola valai (III). Hill stream	
(D). Suthu valai (IV). Sea	
Choose the correct answer from the options given below:	
1. (A) - (IV), (B) - (III), (C) - (I)	
4. (A) - (III), (b) - (IV), (C) - (II)	
A1:1	
A2:2	
A3:3	
A4:4	
Objective Question	
	4.0
4. Staphylococcus aureus	
A1:1	
A2:2	
A3:3	
A3:3 A4:4 Match List-I with List-II List-II Fishing gear (A), Pole and line (B), Long/Dor (C), Kola valai (II), Hill stream (ID), Suthu valai (IV), Sea Choose the correct answer from the options given below: 1, (A) - (W, (B) - (III), (C) - (III), (D) - (IV) 2, (A) - (0), (B) - (IV), (C) - (IV), (D) - (IV) 4, (A) - (IV), (B) - (IV), (C) - (IV), (D) - (IV) A1:1 A2:2 A3:3 A4:4 Which is the major patghogen in ready-to-eat products? 1, Listeria monocytogenes 2, Vibrio cholere 3, Escherichia coli 4, Staphylococcus aureus A1:1	

95	3295		4.0	1.00
		Given below are two statements:		
		Statement (I): Bull trawling or pair trawling is a specialized trawling method in which the mouth of the trawl is kept open by means of pair trawlers towing apart.		
		Statement (II): In Japan Bull is known as pareja trawling.		
		In light of the above statements, choose the most appropriate answer from the options given below.		
		1. Both Statement (I) and Statement (II) are correct.		
		2. Both Statement (I) and Statement (II) are incorrect.		
		3. Statement (I) is correct but Statement (II) is incorrect.		
		4. Statement (I) is incorrect but Statement (II) is correct.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Que	stion		
96	3296		4.0	1.00
		The specific gravity of ferrocement is		
		1. 2.4 - 2.6 2. 2.8 - 3.0		
		2. 2.8 - 3.0 3. 2.0 - 2.1		
		4. 3.1 - 3.3		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	3297	stion	4.0	1.00
97	3297	Given below are two statements one is labelled as Assertion (A) and other one labelled as Reason (D)	4.0	1.00
		Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).		
		Assertion (A): Tonnage is a measure of ship's capacity. It can be expressed either in volume or weight.		
		Reason (R): Displacement tonnage is the amount of water displaced by a ship expressed in tons weight (1ton =1000kg i.e.		
		0.99m ³ of salt water or 1m ³ of fresh water)		
		In light of the above statements, choose the <i>correct</i> answer from the options given below.		
		1. Both (A) and (R) are true and (R) is the correct explanation of (A).		
		2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).		
		3. (A) is true but (R) is false.		
		4. (A) is false but (R) is true.		
		A1:1		

		A2:2		
		A3:3		
		A4:4		
Obje	ctive Que	stion		
98	3298		4.0	1.00
		Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).		
		Assertion (A): Frozen tuna exhibit green/brown on cooking.		
		Reason (R): Browning is due to the formation of metmyoglobin in the muscle through autoxidation of ferrous myoglobin.		
		In light of the above statements, choose the <i>correct</i> answer from the options given below.		
		1. Both (A) and (R) are true and (R) is the correct explanation of (A).		
		2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).		
		3. (A) is true but (R) is false.		
		4. (A) is false but (R) is true.		
		A1:1		
		A2;2		
		A3:3		
		A4:4		
Ohie	ctive Que	stion		
99	3299		4.0	1.00
		Given below are two statements:		
		Statement (I): The most widely used fish detection instrument is the echo sounder.		
		Statement (II): An echo sounder consists of only two major components: transducer and receiver.		
		In light of the above statements, choose the <i>most appropriate</i> answer from the options given below.		
		1. Both (A) and (R) are true and (R) is the correct explanation of (A).		
		2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).		
		3. (A) is true but (R) is false.		
		4. (A) is false but (R) is true.		
		A1:1		
		A2:2		
		A2:2		
		A2:2 A3:3		
		A3:3 A4:4		
	ctive Que	A3:3 A4:4		
	octive Que	A3:3 A4:4	4.0	1.00

		"Mush" condition in canned fish occurs due to 1. Protozoa 2. Fungus 3. Bacteria 4. Salt		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohia	ativa Ova	a:		
	ctive Ques	ition	4 n	1.00
101		Which of the following compound gives sweet and meaty flavour to fish?	7.0	1.00
		1. Inosine monophosphate		
		Inosine Adenosine diphosphate		
		4. Hypoxanthine		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obie	ctive Ques	tion		
	3302		4.0	1.00
		Limit of Escherichia coli in Frozen Seafood (Cfu/g)		
		1.0		
		2. 20		
		3. 100		
		4. 1000		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Ques	tion	1	
103	3303		4.0	1.00

7/14/23, 5:00 PM 185_14_B1_Live_FISHERIESSCIENCE_1-120.html Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). Assertion (A): Basic principle of marine engine is based on the latent heat energy of fuel is converted into mechanical energy in the case of heat engines. Reason (R): Combustion takes place inside in terms of steam engine. In light of the above statements, choose the correct answer from the options given below. 1. Both (A) and (R) are true and (R) is the correct explanation of (A). 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A). 3. (A) is true but (R) is false. 4. (A) is false but (R) is true. A1:1 A2:2 A3:3 A4:4

Objective Qu	estion	1	
104 3304	Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).	4.0	1.00
	Assertion (A): Sextant is a modern navigational instrument, which is used for the measurement of vertical and horizontal angles at sea.		
	Reason (R): It is an instrument of double reflection by means two mirrors and is capable of measuring angles up to 120° .		
	In light of the above statements, choose the <i>correct</i> answer from the options given below.		
	1. Both (A) and (R) are true and (R) is the correct explanation of (A).		
	2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).		
	3. (A) is true but (R) is false. 4. (A) is false but (R) is true.		
	A1:1		
	A2:2		
	A3:3		
	A4:4		

Obje	bjective Question			
105	3305		4.0	1.00

		Scombroid poisoning is related to (A). Thunnus alalunga (B). Coryphaena hippurus (C). Labeo rohita (D). Oreochromis niloticus Choose the correct answer from the options given below: 1. (A), (B) and (D) only. 2. (A), (B) and (C) only. 3. (A), (B), (C) and (D). 4. (A) and (B) only.		
		A2:2 A3:3 A4:4		
Ohie	ctive Que	ntion .		
	3306		4.0	1.00
		A single value used to estimate population parameter is called 1. Statistic 2. Point estimate 3. Variable 4. Estimator A1:1 A2:2 A3:3 A4:4		
Ohie	ctive Que	stion		
	3307	For a given set of data, if the difference between mean and mode is 36 what is the difference between mean and median? 1. 6 2. 12 3. 24 4. 36	4.0	1.00
		A1:1 A2:2		
		A3:3		

A4:4 Objective Question 108 3308 4.0 1.00 A measure of the relationship between two random variables and to what extent they change together is 1. Covariance 2. Correlation 3. Regression 4. Coefficient of determination A1:1 A2:2 A3:3 A4:4 Objective Question 109 3309 4.0 1.00 A pond contains 200 fishes of which 40 are marked. A second pond contains 300 fishes of which 50 are marked. One fish is drawn from each of the ponds. What is the probability that the fishes drawn are both marked? 1.1/90 2.1/60 3. 1/30 4. 1/11 A1:1 A2:2 A3:3 A4:4 Objective Question 110 3310 4.0 1.00 Given below are two statements: Statement (I): A belt of coastal waters extending utmost 12 nautical miles from the baseline of a coastal state is called territorial Statement (II): A belt of coastal waters extending utmost 24 nautical miles from the outer edge of the territorial sea is called contiguous zone. In light of the above statements, choose the most appropriate answer from the options given below. 1. Both Statement (I) and Statement (II) are correct. 2. Both Statement (I) and Statement (II) are incorrect. 3. Statement (I) is correct but Statement (II) is incorrect. 4. Statement (I) is incorrect but Statement (II) is correct. A1:1

Objective Question

4.0 1.00

Which of the following is launched by Government of India recently for comprehensive development of villages of blocks on northern border to improve livelihood people living in identified border villages of India?

- 1. Mission Amrit Sarovar
- 2. Vibrant Villages Programme
- 3. National Agriculture Market
- 4. Krishi UDAN Scheme
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

112 3312

The United Nations General Assembly has declared 2022 as the International Year of

4.0 1.00

- 1. Artisanal fisheries and Aquaculture
- 2. Sustainable marine fisheries
- 3. Mariculture
- 4. Seafood safety
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

113 3313

4.0 1.00

Ш					
			Identify the correct sequence of steps in extension teaching		
			(A). Desire		
			(B). Conviction		
			(C). Interest		
			(D). Attention		
			(E). Satisfaction		
			(F). Action		
			Choose the correct answer from the options given below:		
			1. (C), (B), (A), (D), (F), (E).		
ı			2. (D), (C), (A), (B), (F), (E).		
ı			3. (D), (C), (B), (F), (A), (E).		
ı			4. (A), (C), (E), (F), (B), (D).		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
		tive Ques	stion		
	114	3314	Three of the following extension teaching methods belong to the same category. Choose the odd one out.	4.0	1.00
			Bulletin		
			2. Radio talk		
			3. Exhibition		
			4. Field trip		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
ŀ	Ohied	ctive Ques	estion		
		3315		4.0	1.00
U					
I					
	- 11				

		Identify 3 R's of credit (A). Referral (B). Returns (C). Reach (D). Repaying capacity (E). Risk bearing ability Choose the <i>correct</i> answer from the options given below: 1. (B), (D) and (E) only. 2. (A), (B) and (E) only. 3. (B), (C) and (D) only. 4. (A), (B), (C) and (D) only.		
		AI.I		
		A2:2		
		A3:3		
		A4:4		
	ctive Que 3316	stion		1.00
		Indian marine products exports value worth during 2021-22 1. US\$ 8.95 billion 2. US\$ 7.76 billion 3. US\$ 6.67 billion 4. US\$ 5.08 billion A1:1 A2:2		
		A3:3		
		A4:4		
Obie	ctive Que	stion		
	3317		4.0	1.00
		The market situation where there is only one buyer in the market is called		
		1. Monopoly 2. Monopsony 3. Perfect market 4. Monarchy		
		A1:1		
		A2:2		

		A3:3		
		A4:4		
		A4.4 		
Ohio	ctive Que	ction		
	3318	SIUII	4.0	1.00
110	3310	Study the product life cycle diagram as given. If A, B, C and D represents different stages of product life cycle, which stage is least expensive stage?		1.00
		A Tree		
		1. Stage A		
		2. Stage B		
		3. Stage C		
		4. Stage D		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Que	stion	4.0	1.00
119	3319	The headquarter of the WTO is at	4.0	1.00
		1. Uruguay		
		2. New York 3. Tokyo		
		4. Geneva		
		4. Serieva		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Que	stion		1
	3320		4.0	1.00
		Which of the following is regarded as one of the fixed costs in aquaculture?		
		1. Pond construction		
		2. Depreciation		
		3. Electricity		
		4. Repair and maintenance of equipments		