

JEE-Main-29-01-2025 (Memory Based) [EVENING SHIFT] Maths

Question: If the letters of the word "KANPUR" are arranged in dictionary, then the 440th word is

Options: (a) PRKAUN (b) PRKUAN (c) PRKNAU

(d) PRKUNA

Answer: (a)

AKNPRU	
A	-⇒5! ⇒120
к	-⇒ 5! ⇒ 120
N	
PA	-⇒ 4! ⇒ 2
РК	·-⇒ 4! ⇒ 24
PN	-⇒ 4! ⇒ 24
PRA	-⇒3!⇒6
PKKANU	2 ⇒ 1
PRRAUN	⇒1

Question: If 7¹⁰³ is divided by 23, then remainder is **Options:** (a) 11

440

(b) 12

(c) 14

(d) 16

Answer: (c)

Question: Let $a_{ij} = \left(\sqrt{2}
ight)^{t+j}$, $A = \left[a_{ij}
ight]_{3 imes 3}$ If sum of third row of A² is $lpha+eta\sqrt{2}$, then $_{lpha+eta}$ is Answer: (224)

$$f(x)=\int_0^x tig(t^2-3t+20ig)dt, x\in(1,3)$$
 and range of f(x) is $(lpha,eta)$ then $lpha+eta$ is equal

then α + **Options:**

Vedantu

(a)
$$\frac{185}{2}$$

(b) $\frac{185}{2}$
(c) $\frac{185}{2}$
(d) $\frac{37}{4}$
Answer: (b)
 $f(x) = \int_{0}^{x} t(t^{2} - 3t + 20) dt$
 $xt(1, 3)$
 $f'(x) = x^{3} - 3x^{2} + 20x$
 $f(x) = \frac{x^{4}}{4} - x^{3} + 10x^{2}$
 $f'(x) > 0$
 $f(x)$ is $xt(1, 3)$ function
so $f(1) = \frac{37}{4} = \alpha$
 $f(3) = \frac{333}{4} = \beta$
 $\therefore \alpha + \beta = \frac{37 + 333}{4}$
 $= \frac{185}{4}$
Question: The value of the limit
 $\lim_{x \to 0} (\cos ecx) (\sqrt{2\cos^{2}x + 3\cos x} - \sqrt{\cos^{2}x + \sin x + 4})$ is
Options:
(a) 0
(b) 1
 $(x) \frac{1}{2\sqrt{5}}$

(c) $2\sqrt{5}$ (d) $-\frac{1}{2\sqrt{5}}$ Answer: (d)

Vedantu

$$\begin{split} &\lim_{x \to 0} \frac{1}{\sin x} \left(\sqrt{2\cos^2 x + 3\cos x} - \sqrt{\cos^2 + \sin x + 4} \right) \\ &\lim_{x \to 0} \frac{1}{\sin x} \left[\frac{2\cos^2 x + 3\cos x - \cos^2 - \sin x - 4}{\sqrt{2\cos^2 x + 5\cos x + \sqrt{\cos^2 x + \sin x + 4}}} \right] \\ &\Rightarrow &\lim_{x \to 0} \left[\frac{1}{\sin x} \left[\frac{\cos^2 x - 3\cos x - \sin x - 4}{\sqrt{2\cos^2 x + 3\cos x + \sqrt{\cos^2 x + \sin x + 4}}} \right] \\ &\Rightarrow &\lim_{x \to 0} \left[\frac{-2\cos x \sin x - 3\sin x - \cos x}{\sqrt{5 + \sqrt{5}}} \right] \\ &\Rightarrow -\frac{1}{2\sqrt{5}} \end{split}$$
Question: Let the line L be $\frac{x - 1}{1} = \frac{y - 4}{3} = \frac{z - 7}{3}$ and foot of perpendicular from (1, -2, -1) to L is (α, β, γ) then $\alpha + \beta + \gamma$ is Options:
(a) $-\frac{69}{35}$
(b) $\frac{102}{35}$
(c) $\frac{69}{35}$
(d) $-\frac{102}{35}$
Answer: (d) $A(A + 1, 3\lambda + 4, 5\lambda + 7)$
 $P(1, -2, -1), DR = (1, 3, 5)$
 $\overrightarrow{AP} \cdot (DR) = 0$
 $\lambda \cdot 1 + 3(3N + 6) + (5\lambda + 2) 5 = 0$
 $\lambda = \frac{-58}{35}$
 $A \Rightarrow \left(-\frac{58}{35} + 1, 3\left(-\frac{58}{35} \right) + 4, 5\left(-\frac{58}{35} \right)$
 $\Rightarrow \left(\frac{23}{35}, -\frac{34}{35}, -\frac{9}{7} \right)$
 $\alpha + \beta + \gamma = \frac{23}{35}, \frac{-34}{35}, \frac{-9}{7} \Rightarrow -\frac{-102}{35}$

Question: If the exhaustive value of a for which the equation $2x^2 + (a - 5)x + 15 = 3a$ has no real root (α, β) , then $|4(\alpha + \beta)|$ is equal to Options:

(a) 56 (b) 52 (c) 54 (d) 18 **Answer: (a)**

Vedantu

Question: Area enclosed between the curves $|y| = 1 - x^2$ and $x^2 + y^2 = 1$ is $(\pi - \alpha)$ sq. units, then 9α is

Options:

- (a) 8 (b) 16
- (c) 10 (c) 32
- (d) 24
- Answer: (d)

 $ert y ert = 1 - x^2 \ x^2 + y^2 = 1$

Required Area =
$$4 imes \left(\frac{\pi}{4} - \int_{0}^{1} (1-x^2) dx \right)$$

$$= \pi - 4 \left[x - \frac{x^3}{3} \right]_0^1$$

$$\Rightarrow \pi - 4 \left[1 - \frac{1}{3} \right]$$

$$\Rightarrow \pi - \frac{8}{3}$$

$$\approx - \frac{8}{3}$$

$$lpha = rac{3}{3}$$

So $9lpha = 9 imes rac{8}{5} = 24$

tion: If
$$\log y = x \log rac{2}{5}, x \in N$$
 (

 $\cup \{0\}.$ Then sum of all values

Question: If of y equals to Options:

(a) $\frac{5}{3}$ (b) $\frac{2}{3}$ (c) $\frac{5}{4}$ (d) $\frac{8}{3}$ Answer: (a)

Vedantu

$$egin{aligned} \log y &= x \log ig(rac{2}{5} ig), n \in NU\{0\} \ y &= ig(rac{2}{5} ig)^x \ y &= 1, rac{2}{5}, ig(rac{2}{5} ig)^2, \ y &= rac{1}{1-rac{2}{5}} \ &\Rightarrow rac{5}{3} \end{aligned}$$

Question: There is an arithmetic progression $a_1, a_2, a_3, \dots, a_{2024}$ and $a_1 + (a_5 + a_{10} + a_{15} \dots a_{15} + a_{15} \dots a_{15})$ a_{2020}) + a_{2024} = 2233. Find the value of $a_1 + a_2 + a_3 + \dots + a_{2024}$. **Options:** (a) 11034 (b) 11132 (c) 10432 (d) 20462 Answer: (b) $a_1, a_2, a_3 \dots a_{2024}$ $a_1 + a_{2024} = a_2 + a_{2023} = \dots = l$ $\therefore a_1 + (a_5 + a_{10} + a_{15} + \dots a_{2020}) + a_{2024}$ total = 1202: l + 202l = 2233 $l = \frac{2233}{203}$ $\therefore a_1 + a_2 + a_3 ... a_{2024} \Rightarrow rac{2024}{2} imes l$ $\Rightarrow \frac{2024}{2} \times \frac{2233}{203}$

 $\Rightarrow 11132$

Question: Two points (4, 2) and (0, 2) lie on the circle whose centre lies on 3x + 2y + 2 = 0, then length of chord whose mid-point is (1, 2) is Options:

(a)
$$\sqrt{3}$$

(b) $\sqrt{5}$
(c) $2\sqrt{3}$
(d) $2\sqrt{5}$
Answer: (c)

Question: If α , β are the values of m where x + y + 2z = 1

x + 2y + 4z = m x + 4y + 8z = m² have infinitely many solutions. Then $\sum_{n=1}^{10} (n^{\alpha} + n^{\beta})$ is equal to Answer: (440)

Question: The value of $\int_0^{\frac{\pi}{4}} \left(\sin \left| \left(4x - \frac{\pi}{2} \right) \right| + \sin[2x] \right) dx$ is (where [.] denotes the greatest integer function)

Options:

$$\frac{1}{2} + \left(\frac{\pi - 2}{4}\right) \sin 1$$
(a)
$$\frac{1}{4} + \left(\frac{\pi - 2}{2}\right) \sin 1$$
(b)
$$\frac{1}{4} + \left(\frac{\pi - 2}{2}\right) \sin 1$$
(c)
$$\frac{1}{2} - \left(\frac{\pi - 2}{4}\right) \sin 1$$
(d)
$$\frac{1}{4} - \left(\frac{\pi - 2}{2}\right) \sin 1$$
Answer: (a)