

# BOARD QUESTION PAPER: JULY 2024 PHYSICS

Time: 3 Hrs. Max. Marks: 70

#### **General Instructions:**

*The question paper is divided into four sections:* 

- (1) Section A: Q. No. 1 contains Ten multiple choice type of questions carrying One mark each.
  Q. No. 2 contains Eight very short answer type of questions carrying One mark each.
- (2) Section B: Q. No. 3 to Q. No. 14 contain Twelve short answer type of questions carrying Two marks each. (Attempt any Eight).
- (3) Section C: Q. No. 15 to Q. No. 26 contain Twelve short answer type of questions carrying Three marks each. (Attempt any Eight).
- (4) Section D: Q. No. 27 to Q. No. 31 contain Five long answer type of questions carrying Four marks each. (Attempt any Three).
- (5) Use of the log table is allowed. Use of calculator is **not** allowed.
- (6) Figures to the right indicate full marks.
- (7) For multiple choice type questions, only the first attempt will be consider for evaluation.
- (8) Physical Constants:
  - (i)  $g = 9.8 \text{ m/s}^2$
  - (ii)  $\pi = 3.142$
  - (iii)  $\mu_0 = 4\pi \times 10^{-7} \text{ Wb/Am}$
  - (iv)  $c = 1.6 \times 10^{-19} C$

# SECTION - A

|      |                                                                                     | SHOTT                                                                                                                                                          |     |                              |  |
|------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------|--|
| Q.1. | Selec                                                                               | Select and write the correct answers for the following multiple choice type of questions:                                                                      |     |                              |  |
| i.   | Atoms having the same number of protons but different number of neutrons are called |                                                                                                                                                                |     |                              |  |
|      | (A)                                                                                 | isotopes                                                                                                                                                       | (B) | isobars                      |  |
|      | (C)                                                                                 | isotones                                                                                                                                                       | (D) | isomers                      |  |
| ii.  | The 1                                                                               | The molecules on the surface of liquid have                                                                                                                    |     |                              |  |
|      | (A)                                                                                 | minimum kinetic energy.                                                                                                                                        | (B) | minimum potential energy.    |  |
|      | (C)                                                                                 | maximum kinetic energy.                                                                                                                                        | (D) | maximum potential energy.    |  |
| iii. |                                                                                     | If coefficient of emission is 'e' for a perfectly black body and coefficient of transmission is 't' then                                                       |     |                              |  |
|      | (A)                                                                                 | e=0, t=1                                                                                                                                                       | (B) | e = 1, t = 1                 |  |
|      |                                                                                     | e = 0, t = 0                                                                                                                                                   | (D) | e = 1, t = 0                 |  |
|      |                                                                                     |                                                                                                                                                                | (D) | 1, 1                         |  |
| iv.  |                                                                                     | ED emits light when its                                                                                                                                        |     |                              |  |
|      |                                                                                     | junction is reverse biased.                                                                                                                                    |     | depletion region widens.     |  |
|      | (C)                                                                                 | holes and electrons recombine.                                                                                                                                 | (D) | junction becomes hot.        |  |
| V.   |                                                                                     | An electron, a proton, an α-particle and a hydrogen atom are moving with the same kinetic energy. The associated de Broglie wavelength will be the longest for |     |                              |  |
|      | (A)                                                                                 | electron                                                                                                                                                       | (B) | proton                       |  |
|      | (C)                                                                                 | α-particle                                                                                                                                                     | (D) | hydrogen atom                |  |
| vi.  |                                                                                     | otron is used to accelerate                                                                                                                                    |     |                              |  |
|      |                                                                                     | neutral particles                                                                                                                                              | (B) | negatively charged particles |  |
|      | (C)                                                                                 | positively charged particles                                                                                                                                   | (D) | all types of particles       |  |
| vii. | The                                                                                 | unit henry is equal to                                                                                                                                         |     |                              |  |
|      | (A)                                                                                 | watt                                                                                                                                                           | (B) | ohm-second                   |  |
|      | (C)                                                                                 | dyne                                                                                                                                                           | (D) | $Wb/m^2$                     |  |

# **Physics**



- viii. The ratio of emissive power of a perfect black body at 927°C and 327°C is
  - (A) 2:1

(B) 4:

(C) 8:1

- (D) 16:1
- ix. In a series LCR circuit the phase difference between the voltage and the current is 45°. Then the power factor will be \_\_\_\_\_.
  - (A) 0.6071

(B) 0.7071

(C) 0.8081

- (D) 1.0
- x. When an air column in a pipe closed at one end vibrates such that two nodes are formed in it, the frequency of its vibration is
  - (A) two times the fundamental frequency
  - (B) three times the fundamental frequency
  - (C) four times the fundamental frequency
  - (D) five times the fundamental frequency

## Q.2. Answer the following questions:

[8]

- i. What is the radius of gyration of a solid sphere of radius R about its diameter?
- ii. Write the differential equation for liner S.H.M.
- iii. State any one method of polarization of light.
- iv. What is the resistance of an ideal voltmeter?
- v. What are eddy currents?
- vi. What do you mean by logic gate?
- vii. A body of mass 0.2 kg performs linear S.H.M. It experiences a restoring force of 0.4 N when its displacement from the mean position is 8 cm. Determine force constant.
- viii. Determine the work done in bringing a charge of 5  $\mu$ C from infinity to the point A. The potential at point A is 400 kV.

### **SECTION - B**

## Attempt any EIGHT questions of the following:

[16]

- **Q.3.** Show that average energy per molecule is directly proportional to the absolute temperature 'T' of the gas.
- Q.4. Explain cyclic process with the help of neat and labelled p-V diagram.
- Q.5. Distinguish between progressive waves and stationary waves.
- Q.6. Explain Biot and Savart's law with suitable diagram.
- **Q.7.** Draw a neat and labelled diagram of van de Graaf generator.
- Q.8. State the formula for the following:
  - (i) Average power in LCR circuit
  - (ii) Q-factor
- **Q.9.** Explain the working of a transformer with a neat, labelled diagram.
- **Q.10.** A galvanometer has a resistance of  $100 \Omega$  and its full scale deflection current is 0.2 mA, what resistance should be added to it to have a range of 0-10 V?
- **Q.11.** An electron in hydrogen atom-stays in its second orbit for  $10^{-8}$  s. How many revolutions will it make around the nucleus in that time?

[Velocity of electron in second orbit =  $1.07 \times 10^6$  m/s, radius of electron in second orbit =  $2.14 \times 10^{-10}$  m]



- Q.12. A torque of magnitude 400 Nm acting on a body of mass 40 kg produces an angular acceleration of 20 rad/s<sup>2</sup>. Calculate the moment of inertia of the body.
- Q.13. A bar magnet of moment of inertia of 500 gcm<sup>2</sup> oscillates with a time period of 3.142 seconds in a horizontal plane. What is its magnetic moment if the horizontal component of earth's magnetic field is  $4 \times 10^{-5}$  T?
- **Q.14.** A telescope has an objective of diameter 2.5 m. What is its angular resolution when observed at 7500 Å?

#### SECTION - C

## Attempt any EIGHT questions of the following:

[24]

- Q.15. Define surface tension. Obtain the relation between surface tension and surface energy.
- **Q.16.** Show that all harmonics are present in case of a stretched string.
- Q.17. Derive an expression for the impedance of a series LCR circuit connected to an AC power supply.
- Q.18. What is Curic temperature? Distinguish between diamagnetic and paramagnetic substances.
- **Q.19.** Obtain the balancing conditions in case of Wheatstone's bridge.
- **Q.20.** What is ionization energy? Assuming expression for energy of electron, derive an expression for wavelength of spectral lines in hydrogen atom.
- Q.21. What is voltage regulation? Explain the working of Zener diode as a voltage regulator.
- Q.22. A spherical drop of oil falls at a constant speed of 9.8 cm/s in steady air. Calculate the radius of the drop. The density of oil is 0.9013 g/cm<sup>3</sup>, density of air is 0.0013 g/cm<sup>3</sup> and the coefficient of viscosity of air is 1.8 × 10<sup>-4</sup> poise.
- **Q.23.** A search coil having 2000 turns with area 1.5 cm<sup>2</sup> is placed in a magnetic field of 0.6 T. The coil is moved rapidly out of the field in a time of 0.2 second. Calculate the induced emf across the search coil.
- **Q.24.** At what distance from the mean position is the kinetic energy of a particle performing S.H.M. of amplitude 10 cm, three times its potential energy?
- Q.25. When  $2 \times 10^{10}$  electrons are transferred from one conductor to another, a potential difference of 20 V appears between the conductors. Find the capacitance of the two conductors.
- **Q.26.** The magnetic field at the centre of a circular current carrying loop of radius 12 cm is  $6 \times 10^{-6}$  T. What will be the magnetic moment of the loop?

#### SECTION - D

### Attempt any THREE questions of the following:

[12]

- Q.27. Derive an expression for minimum speed to perform stunts in well of death.

  Part of a racing track is to be designed for a radius of curvature of 288 m. We are not recommending the vehicles to drive faster than 216 km/hr. With what angle should the road be tilted?
- **Q.28.** Explain the concept of positive and negative work with varying pressure. Draw corresponding p-V diagrams.
- Q.29. Deduce an expression for molar specific heat of a monoatomic gas at constant volume. Find kinetic energy of 4000 cc of a gas at S.T.P. [Given: Standard pressure is  $1.013 \times 10^5 \text{ N/m}^2$ ]
- Q.30. What is photoelectric effect?

Describe with neat circuit diagrams an experimental setup of photoelectric effect.

**Q.31.** Derive the formula for Brewster's angle.

Green light of wavelength 5100 Å from a narrow slit is incident on a double slit. If the overall separation of 10 fringes on a screen 2 m away is 2 cm. Find the slit separation.