

BOARD QUESTION PAPER: JULY 2024 MATHEMATICS AND STATISTICS

Time: 3 Hrs. Max. Marks: 80

General instructions:

The question paper is divided into **FOUR** sections.

- Q. 1 contains **Eight** multiple choice type of questions, each carrying **Two** marks. (1)Section A:
 - Q. 2 contains Four very short answer type questions, each carrying One mark.
- Q. 3 to Q. 14 contain **Twelve** short answer type questions, each carrying (2) Section B: Two marks. (Attempt any Eight)
- Q. 15 to Q. 26 contain **Twelve** short answer type questions, each carrying (3) Section C: Three marks. (Attempt any Eight)
- (4) Q. 27 to Q. 34 contain **Eight** long answer type questions, each carrying **Four** marks. Section D: (Attempt any **Five**)
- (5)Use of log table is allowed. Use of calculator is not allowed.
- (6) Figures to the right indicate full marks.
- Use of graph paper is <u>not</u> necessary. Only rough sketch of graph is expected. (7)
- (8)For each multiple choice type of question, only the first attempt will be considered for evaluation.
- (9) Start answer to each section on a new page.

SECTION - A

Q.1. Select and write the correct answer for the following multiple choice type of questions: [16]

i.
$$\cos\left[\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{2}\right)\right] = \underline{\qquad}$$

$$(A) \quad \frac{\sqrt{3}}{2}$$

(B)
$$\frac{1}{2}$$

(C)
$$\frac{1}{\sqrt{2}}$$

(D)
$$\frac{\pi}{4}$$

If θ is the angle between two vectors \overline{a} and \overline{b} and $|\overline{a} \cdot \overline{b}| = |\overline{a} \times \overline{b}|$ then θ is equal to _____ ii.

(B)
$$\frac{\pi}{4}$$
 or $\frac{3\pi}{4}$ (C) $\frac{\pi}{2}$

(C)
$$\frac{\pi}{2}$$

(D)
$$\pi \text{ or } \frac{\pi}{6}$$

(2)

The angle between the lines $\vec{r} = (\hat{i} + 2\hat{j} - 3\hat{k}) + \lambda (3\hat{i} + 2\hat{j} + 6\hat{k})$ and $\vec{r} = (5\hat{i} - 2\hat{j} + 7\hat{k}) + \mu (\hat{i} + 2\hat{j} + 2\hat{k})$ iii.

(A)
$$\cos^{-1}\left(\frac{17}{21}\right)$$

(B)
$$\cos^{-1}\left(\frac{20}{21}\right)$$

(C)
$$\cos^{-1}\left(\frac{18}{21}\right)$$

(A)
$$\cos^{-1}\left(\frac{17}{21}\right)$$
 (B) $\cos^{-1}\left(\frac{20}{21}\right)$ (C) $\cos^{-1}\left(\frac{18}{21}\right)$ (D) $\cos^{-1}\left(\frac{19}{21}\right)$

(2)

The perpendicular distance of the plane $\vec{r} \cdot (2\hat{i} + 3\hat{j} - \hat{k}) = 5$, from the origin is ____ iv.

(A)
$$\frac{5}{\sqrt{14}}$$
 units (B) $\frac{5}{14}$ units

(B)
$$\frac{5}{14}$$
 units

(C) 5 units (D)
$$\frac{\sqrt{14}}{5}$$
 units

(2)

If $x = e^{\frac{x}{y}}$ then $\frac{dy}{dx} =$ _____.

(A)
$$1-\frac{y}{x}$$

(A)
$$1 - \frac{y}{x}$$
 (B) $1 + \frac{y}{x}$

(C)
$$\frac{x-y}{x\log x}$$

(D)
$$\frac{x+y}{x\log x}$$

(2)

 $y = c^2 + \frac{c}{a}$ is solution of _____.

(A)
$$x^4 \left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} - y = 0$$

(B)
$$x^2 \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + y = 0$$

(C)
$$x^{3} \left(\frac{d^{2}y}{dx^{2}}\right) - x\frac{dy}{dx} + y = 0$$

(D)
$$x\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4y$$

Mathematics and Statistics

- vii. Given that $X \sim B(n, p)$. If n = 10 and p = 0.4 then E(X) and Var(X) respectively are _____.
 - (A) 4, 0.24
- (B) 0.4, 0.24
- (C) 4, 2.4
- (D) 3, 0.24
- (2)

- viii. The approximate value of $tan(44^{\circ}30')$, given that $1^{\circ} = 0.0175^{\circ}$, is
 - (A) 0.8952
- (B) 0.9528
- (C) 0.9285
- (D) 0.9825
- (2)

Q.2. Answer the following questions:

[4]

i. Find the combined equation of the pair of lines 2x + y = 0 and 3x - y = 0

(1)

ii. Find the value of $\sin^{-1} \left(\sin \frac{5\pi}{3} \right)$

(1)

iii. Evaluate: $\int \frac{5^x}{3^x} dx$

(1)

iv. Write the integrating factor (I.F.) of the differential equation $\frac{dy}{dx} + y = e^{-x}$.

(1)

SECTION - B

Attempt any EIGHT of the following questions:

- [16]
- **Q.3.** If the statements p, q are true statements and r, s are false statements, then determine the truth value of the statement pattern:
 - $(q \wedge r) \vee (\sim p \wedge s)$

(2)

(2)

(2)

- **Q.4.** Find the inverse of matrix A by elementary row transformations, where $A = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$
- **Q.5.** Find the polar co-ordinates of the point whose Cartesian co-ordinates are $(1, -\sqrt{3})$. (2)
- **Q.6.** Find the acute angle between the lines represented by $xy + y^2 = 0$
- **Q.7.** Using the truth table, show that the statement pattern $p \to (q \to p)$ is a tautology. (2)
- **Q.8.** If $\tan^{-1}(2x) + \tan^{-1}(3x) = \frac{\pi}{4}$ then find the value of x, where 0 < 3x < 1. (2)
- **Q.9.** Find the points on the curve given by $y = x^3 6x^2 + x + 3$ where the tangents are parallel to the line y = x + 5.
- **Q.10.** Evaluate: $\int \frac{e^x(1+x)dx}{\sin^2(xe^x)}$ (2)
- **Q.11.** The displacement of a particle at a time t is given by $s = 2t^3 5t^2 + 4t 3$. Find the time when acceleration is 14 ft/sec^2 . (2)
- **Q.12.** Evaluate: $\int_{0}^{\pi/4} \sqrt{1 + \sin 2x} \, dx$ (2)
- **Q.13**. The probability distribution of X is as follows:

X = x	0	1	2	3	4
P(X=x)	0.1	k	2k	2k	k

Find (a) k

(b)
$$P(X < 2)$$

(2)

(2)

- **Q.14.** Find the particular solution of:
 - $r\frac{dr}{d\theta} + \cos\theta = 5$ at $r = \sqrt{2}$ and $\theta = 0$

SECTION - C

Attempt any EIGHT of the following questions:

[24]

- **Q.15.** In $\triangle ABC$, if a cos A = b cos B then prove that the triangle is either a right angled or an isosceles triangle.
- (3)
- **Q.16.** Are the four points A(1, -1, 1), B(-1, 1, 1), C(1, 1, 1) and D(2, -3, 4) co-planar? Justify your answer.
- (3)

Q.17. Find the difference between the slopes of the lines given by $(\tan^2\theta + \cos^2\theta)x^2 - 2xy \tan\theta + (\sin^2\theta)y^2 = 0$

- (3)
- **Q.18.** Find the vector equation of the line passing through the point $(\hat{i} + 2\hat{j} + 3\hat{k})$ and perpendicular to the vectors $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} \hat{j} + \hat{k}$.
- (3)
- **Q.19.** Let \bar{a} and \bar{b} be non-collinear vectors. If vector \bar{r} is co-planar with \bar{a} and \bar{b} then prove that there exists unique scalars t_1 and t_2 such that $\bar{r} = t_1 \bar{a} + t_2 \bar{b}$. Hence find t_1 and t_2 for $\bar{r} = \hat{i} + \hat{j}$, $\bar{a} = 2\hat{i} \hat{j}$, $\bar{b} = \hat{i} 2\hat{j}$.
- (3)

(3)

- **Q.20.** Find the equation of the plane passing through the intersection of the planes x + 2y + 3z + 4 = 0 and 4x + 3y + 2z + 1 = 0 and the origin.
- Q.21. Find $\frac{dy}{dx}$ if $y = \tan^{-1}\left(\sqrt{\frac{3-x}{3+x}}\right)$ (3)
- **Q.22.** Find the approximate value of $f(x) = x^3 + 5x^2 2x + 3$ at x = 1.98. (3)
- **Q.23.** Evaluate: $\int \frac{\sin(x+a)}{\cos(x-b)} dx$ (3)
- **Q.24.** Solve the differential equation $dr + (2r \cot\theta + \sin 2\theta) d\theta = 0$ (3)
- **Q.25.** Let $X \sim B(10, 0.2)$. Find
 - (a) P(X = 1)
 - (b) $P(X \ge 1)$

- (3)
- Q.26. Find the expected value, variance and standard deviation of r.v. X whose p.m.f. is given as:

X = x	1	2	3
P(X)	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{2}{5}$

(3)

SECTION - D

Attempt any FIVE of the following questions:

[20]

Q.27. Give an alternative arrangement for the following circuit, so that the new circuit has minimum switches:

(4)

Q.28. If
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 then find A^{-1} by Adjoint method.

(4)

Mathematics and Statistics

- Q.29. In $\triangle ABC$, D and E are points on BC and AC respectively such that BD = 2DC and AE = 3EC. Let P be the point of intersection of AD and BE. Find ratio $\frac{BP}{PE}$ using the vector method.
 - (4)
- Q.30. A firm manufactures two products A and B on which profit earned per unit are ₹3 and ₹4 respectively. Each product is processed on two machines M₁ and M₂. The product A requires one minute of processing time on M1 and two minutes on M2, while product B requires one minute on M_1 and one minute on M_2 .

Machine M_1 is available for use not more than 450 minutes, while M_2 is available for 600 minutes during any working day.

Find the number of units of products A and B to be manufactured to get maximum profit.

(4)

Q.31. If y = f(u) is a differentiable function of u and u = g(x) is differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that: $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

Hence find $\frac{d}{dx} \left(\frac{1}{\sqrt{\sin x}} \right)$ (4)

- **Q.32.** Evaluate: $\int x^2 \sin 3x dx$ (4)
- Q.33. Prove that:

 $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx, \text{ if f is an even function}$ = 0, if f is an odd function

Hence find the value of $\int \tan^{-1} x \, dx$ (4)

Q.34. Find the area of the ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Hence write area of $\frac{x^2}{25} + \frac{y^2}{16} = 1$ (4)