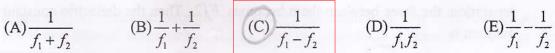
WARNING			ractice or any attempt to commit nation will DISQUALIFY THE C	
	PAPE	R-I	PHYSICS & CHEMIST	ΓRY - 2021
Version Code			uestion Booklet erial Number :	6323745
Time: 150	Minutes		Number of Questions: 120	Maximum Marks: 480
Name of th	e Candidat	e		dading shelppe would
Roll Numb	er			
Signature of	of the Cand	idate		
		IN	STRUCTIONS TO CANDIDATI	25

- 1. Please ensure that the VERSION CODE shown at the top of this Question Booklet is same as that shown in the OMR Answer Sheet issued to you. If you have received a Question Booklet with a different Version code, please get it replaced with a Question Booklet with the same Version Code as that of OMR Answer Sheet from the Invigilator. THIS IS VERY IMPORTANT.
- 2. Please fill the items such as Name, Roll Number and Signature in the columns given above. Please also write Question Booklet Serial Number given at the top of this page against item 3 in the OMR Answer Sheet.
- 3. This Question Booklet contains 120 questions. For each question five answers are suggested and given against (A), (B), (C), (D) and (E) of which only one will be the 'Most Appropriate Answer'. Mark the bubble containing the letter corresponding to the 'Most Appropriate Answer' in the OMR Answer Sheet, by using either Blue or Black Ball Point Pen only.
- 4. Negative Marking: In order to discourage wild guessing the score will be subjected to penalization formula based on the number of right answers actually marked and the number of wrong answer marked. Each correct answer will be awarded FOUR marks. ONE mark will be deducted for each incorrect answer. More than one answer marked against a question will be deemed as incorrect answer and will be negatively marked.
- 5. Please read the instructions in the OMR Answer Sheet for marking the answers. Candidates are advised to strictly follow the instruction contained in the OMR Answer Sheet.

IMMEDIATELY AFTER OPENING THE QUESTION BOOKLET, THE CANDIDATE SHOULD VERIFY WHETHER THE QUESTION BOOKLET CONTAINS ALL THE 120 QUESTIONS IN SERIAL ORDER. IF NOT, REQUEST FOR REPLACEMENT.


DO NOT OPEN THE SEAL UNTIL THE INVIGILATOR ASKS YOU TO DO SO.

PLEASE ENSURE THAT THIS QUESTION BOOKLET CONTAINS 120 QUESTIONS SERIALLY NUMBERED FROM 1 TO 120 **PRINTED PAGES 32**

1.	When two	sound	waves	of slightly	different	frequencies	f_1	and	f_2	are	sounded
	together, th	nen the t	ime int	erval between	en success	sive maxima	is				
				PH 10115							

$$(A)\frac{1}{f_1 + f_2}$$

(B)
$$\frac{1}{f_1} + \frac{1}{f_2}$$

(D)
$$\frac{1}{f_1 f_2}$$

$$(E)\frac{1}{f_1} - \frac{1}{f_2}$$

The electric potential at a point at a distance r due to an electric dipole is proportional 2.

- (A) r^2 (B) r

- (C) r^{-1} (D) r^{-2}

An air capacitor and identical capacitor filled with dielectric medium of dielectric 3. constant 5 are connected in series to a voltage source of 12V. The fall of potential across C1 and C2 are respectively

- (A) 2 V and 10 V
- (B) 10 V and 2 V
- (C) 6 V and 6 V

(D) 4 V and 8 V

(E) 8 V and 4 V

	(A)1:1	(B) 2:1	(C) 1:2	(D) 4.1	(F) 1 4
		N -selenause		(D) 4:1	(E) 1:4
	between them is	s F . When they	y are kept in a diele	certain distance <i>d</i> ctric medium at the s2. Then the dielectric	ame distance
	(A) 5	(B) 2	(C) 4	(D) 3	(E) 8
	The magnitude	of the drift vel	ocity per unit electr	ic field is defined as	
	(A) mobility	(m)	(B) resistivity	(C) conductivity	
	(D) 1				
	(D) current der	nsity	(E) impedance		
	(D) current der	nsity	(E) impedance		
	(D) current der	At Linear Control		appended by a rottogge	a da aA matanaga
	(D) current der	At Linear Control	Space for rough work	specifier and identified and inc.	o de al. Sentendo
	(D) current der	At Linear Control		apadiar no destros se se seconda en la send C. ere reconstiv	o de nA Anetonio
10	(D) current der	At Linear Control		omebi bus rétiseque mi les comments est est est est est est est est est e	o de aA Sentencia Classica
10	(D) current de	At Linear Control		or religion politicos de la composición del composición de la composición de la composición del composición de la composición de la composición de la composición de la composición del composición de la composición de la composición de la composición de la composición del comp	s de aA metallo Clearen
10	(D) current de	At Linear Control		geetist and identification of the control of the co	y die nA
10	(D) current der	At Linear Control		profile in the second in the s	y no nA
	(D) current der	At Linear Control		apacitar and Identific and Commenced in a and Commenced in	o de nA
	(D) current der	At Linear Control		orimebi bis retiosqu ini homentan mu i vitosem ma . 1 hna .	S BS 11A
	(D) current der	At Linear Control		vitoerar era "Thias	S BS AA
	(D) current der	At Linear Control		vitorear en d'Anne	y no nA
	(D) current der	At Linear Control		apacitor and Identification of the second in a second	S BS 11A
	(D) current der	At Linear Control		profitor of the second of the	S B BA
	(D) current der	At Linear Control		or home-had the solitory. The home-had the solitory of the so	Transport
	(D) current der	At Linear Control		vitoeran era "Thias	
	(D) current der	At Linear Control		vitorear en . I han	
	(D) current der	At Linear Control		process and the street in a second in a se	
	(D) current der	At Linear Control		processor and the street of th	
	(D) current del	At Linear Control		processors of the street of th	
FOR	(D) current del	At Linear Control		processor and the street in a second in a	
	(D) current del	At Linear Control		in homenan medical in the second in the seco	

(A) 0.5Ω (B) 1Ω (C) 1.5Ω (D) 2Ω (E) 2.5Ω A carbon resistor is marked with the rings coloured blue, black, red and silver. Its resistance in ohm is (A) $60 \times 10^2 \pm 10\%$ (B) $1 \times 10^5 \pm 10\%$ (C) $1 \times 10^6 \pm 5\%$ (D) $3.2 \times 10^4 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T . The force acting on it is (A) 0.5 N (B) 5 N (C) 0.25 N (D) 2.5 N (E) 0.125 N Space for rough work	If one cell is c 1.5 V and inter combination is	onnected wron rnal resistance	gly in a series combined of 0.5 Ω , then the eq	nation of four cells each o uivalent internal resistance	of e.m.f.
resistance in ohm is $(A) 60 \times 10^2 \pm 10\%$ $(B) 1 \times 10^5 \pm 10\%$ $(C) 1 \times 10^6 \pm 5\%$ $(D) 3.2 \times 10^4 \pm 5\%$ $(E) 45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is $(A) 0.5 \text{ N}$ $(B) 5 \text{ N}$ $(C) 0.25 \text{ N}$ $(D) 2.5 \text{ N}$ $(E) 0.125 \text{ N}$	(A) 0.5Ω	(B) 1 Ω	(C) 1.5 Ω	(D) 2Ω (E) 2	2.5 Ω
(D) $3.2 \times 10^4 \pm 5\%$ (E) $45 \times 10^2 \pm 5\%$ A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is (A) 0.5 N (B) 5 N (C) 0.25 N (D) 2.5 N (E) 0.125 N	A carbon resistance in oh	tor is marked m is	with the rings coloure	ed blue, black, red and sil	ver. Its
A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is (A) 0.5 N (B) 5 N (C) 0.25 N (D) 2.5 N (E) 0.125 N	$(A) 60 \times 10^2 \pm 1$	10%	(B) $1 \times 10^5 \pm 10\%$	(C) $1 \times 10^6 \pm 5\%$	6
A conductor of length 20 cm carrying a current of 5A is placed at an angle of 30° to the external magnetic field of 0.5 T. The force acting on it is (A) 0.5 N (B) 5 N (C) 0.25 N (D) 2.5 N (E) 0.125 N	(D) $3.2 \times 10^4 \pm$	5%	(E) $45 \times 10^2 + 5\%$		
Space for rough work	the external ma	gnetic field of ((B) 5 N	0.5 T. The force acting (C) 0.25 N	on it is	
		*	Space for rough work		

	with the coil, then	0		***************************************
	(A) τ is minimum for $\theta = 90$. (B) τ as	nd φ are maximu	$\text{im for } \theta = 0^{\circ}$
	(C) φ is maximum for $\theta = 9$)° (D) τ a	and φ are zero for	$r \theta = 90^{\circ}$
	(E) τ is zero and φ is maxin	num for $\theta = 0^{\circ}$	bersonnes a ll	
12.	In Cyclotron, the frequency independent of	of revolution of the charg	ed particle in a r	nagnetic field is
		ALC: FUNDED IN		
	(A) its mass	(B) its energy	(C) oscillator	y frequency
		(B) its energy . (E) its charge	(C) oscillator	y frequency
	(A) its mass (D) magnetic field	(E) its charge	e in com is	y frequency
13.	(A) its mass	(E) its charge	e in com is	y frequency
13.	(A) its mass (D) magnetic field	(E) its charge	e in com is	y frequency (E) nickel

14.	If B_c is the m	agnetic induction	at the centre of a	circular coil carr	ving current then
		nduction at a po	int on the axis of		
	$(A)\frac{B_c}{2\sqrt{2}}$	$(B)\frac{B_c}{2}$	(C) $\frac{B_c}{4}$	$(D)\frac{B_c}{\sqrt{2}}$	(E) $\frac{B_c}{8}$

If air core is replaced by an iron core in an inductor, its self-inductance is increased 15. from 0.02 mH to 40 mH. The relative permeability of iron is

(A) 5000

(B) 2000

(C) 200

(D) 500

(E)400

Among various circuits constructed with resistor R, inductor L and capacitor C, the 16. circuit that gives maximum power dissipation is

(A) purely inductive circuit

(B) purely capacitive circuit

(C) purely resistive circuit

(D) L-C series circuit

(E) C-R series circuit

17. Eddy currents are not used in the application of

(A) induction furnace

(B) thermal generators

(C) electromagnetic damping

(D) electric power meters

(E) magnetic braking in trains

The total intensity of earth's magnetic field at the poles is 7 units. Its value at the 18. equator is

(A) $7\sqrt{2}$ units

(B) 3.5 units

(C) 7 units

(D) $\frac{7}{\sqrt{2}}$ units (E) 14 units

Electromagnetic waves against their detection devices are matched below. The mismatch is Ionization chamber (A) Gamma rays Point contact diode (B) Microwaves Photographic film (C) X - rays(D) Ultraviolet rays Thermopiles (E) Infrared rays Bolometer In an electromagnetic wave, the oscillating electric and magnetic field vectors are 20. oriented in (A) mutually perpendicular directions with a phase difference of $\pi/2$ (B) the same direction and in the same phase (C) mutually perpendicular directions with a phase difference of π (D) the same direction with a phase difference of $\pi/2$ (E) mutually perpendicular directions and are in phase Fresnel distance for an aperture of size a illuminated by a parallel beam of light of 21. wavelength λ , deciding the validity of ray optics is (D) $\frac{a^2}{1}$ (E) $a^2 \lambda^2$ (A) $\frac{\lambda}{a^2}$ (B) λa The apparent depth of a needle lying in a water beaker is found to be 9 cm. If water is 22. replaced by a liquid of refractive index 1.5, then the apparent depth of needle will be (μ of water is 4/3)

Space for rough work

(B) 9 cm

(C) 12 cm

(D) 7 cm

(E) 8 cm

(A) 10 cm

from the mirror of				
(A) 3	(B) -0.5	(C) -2	(D) 0.33	(E) -1
λ_1 and λ_2 produ	uce interference β_1 and β_2 is	ce pattern with band 3: 2, then the ratio	d widths β_1 and β_2 between λ_1 and λ_2	B_2 respectively. If
If θ_p is the pola θ_c , then	rizing angle fo	or a glass plate of re	efractive index μ	and critical angle
$(A) \theta_p = \theta_c$		(B) $tan \theta_p \cdot s$	$in \theta_c = 1$	(C) $\theta_p \theta_c = 1$
(D) $\tan \theta_p = si$	$n\theta_c$	(E) $tan \theta_p$ s	$in \theta_c = \mu$	
photoelectrons o	f same maxim	um kinetic energy o	of 1eV. If the wave	
(A) 400 nm			(D) 600 nm	(E) 250 nm
		Space for rough work		
	from the mirror of mirror is (A) 3 In Young's dot λ_1 and λ_2 product the ratio between (A) 3:1 If θ_p is the polar θ_c , then (A) $\theta_p = \theta_c$ (D) $\tan \theta_p = \sin \theta_c$ Two materials A photoelectrons of light on A is 500	from the mirror on the same side mirror is (A) 3 (B) -0.5 In Young's double-slit expending the ratio between β_1 and β_2 is (A) 3:1 (B) 1:3 If θ_p is the polarizing angle for θ_c , then (A) $\theta_p = \theta_c$ (D) $\tan \theta_p = \sin \theta_c$ Two materials A and B having photoelectrons of same maximalight on A is 500 nm, then that (A) 400 nm (B) 300 nm	from the mirror on the same side of the object, the mirror is (A) 3 (B) -0.5 (C) -2 In Young's double–slit experiment, two diffe λ_1 and λ_2 produce interference pattern with band the ratio between β_1 and β_2 is $3:2$, then the ratio (A) $3:1$ (B) $1:3$ (C) $2:3$ If θ_p is the polarizing angle for a glass plate of reference, then (A) $\theta_p = \theta_c$ (B) $\tan \theta_p \cdot s$ (E) $\tan \theta_p \cdot s$ Two materials A and B having respective work for photoelectrons of same maximum kinetic energy of light on A is 500 nm, then that of light incident or	In Young's double–slit experiment, two different light beams λ_1 and λ_2 produce interference pattern with band widths β_1 and β_2 the ratio between β_1 and β_2 is 3:2, then the ratio between λ_1 and λ_2 (C) 2:3 (D) 3:2 If θ_p is the polarizing angle for a glass plate of refractive index μ θ_c , then (A) $\theta_p = \theta_c$ (B) $\tan \theta_p \cdot \sin \theta_c = 1$ Two materials A and B having respective work functions 3 eV and photoelectrons of same maximum kinetic energy of 1eV. If the wave light on A is 500 nm, then that of light incident on B is (A) 400 nm (B) 300 nm (C) 350 nm (D) 600 nm

27.	If the momentum of an α – wavelengths of their de-Bro			proton, then the	e ratio between the
	(A) 1:2 (B) 4:1		(C) 1:4	(D) 1:1	(E) 2:1
28.	During β ⁻ decay of a radioac	ctive ele	ement there is an	increase in its	'emio' d' Et
	(A) mass number	(H	3) neutron numb	er (C) elec	tron number
	(D) proton number	(H	E) atomic weight	recent of and o	
29.	10 ¹⁸ fissions per second is power station. To increase fissions required per second	the po			
	(A) 2×10^{18} (B) 5×1	018	(C) 5×10^{17}	(D) 6×10 ¹⁷	(E) 2×10^{17}
30.	The ratio of the total energy is	E of th	e electron to its	kinetic energy K	in hydrogen atom
	(A) 1 (B) $\frac{1}{2}$	off stres	(C) 2	(D) -1	(E) $-\frac{1}{2}$
11130	E I S	Space	for rough work	Lagit min this a	Heno bis
			· · · · ·		
	22				

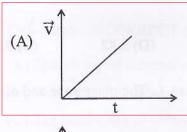
31.	If the mass numbers of two nuclei are in the ratio 3:2, then the ratio of their nuclear densities is:									
	(A) $3^{1/3}:2^{1/3}$	(B) $2^{1/3}:3^{1/3}$	(C) 2:3	(D) 1:1	(E) 3:2					
32.	In p-type semico	onductors								
	(A) holes are mi	nority carriers								
	(B) the vacancy	of electron is a ho								
	(C) the impurity	element added is	donor type							
	(D) for every pentavalent impurity atom added an extra hole is created									
	(E) the electron	will move from on	e hole to another	hole constituting a	flow of current					
33.		In a CB mode of a transistor the current through the emitter is 6 mA. If the current gain of the transistor is 0.95 then its base current is								
	(A) 0.2 mA	(B) 0.3 mA	(C) 0.5 mA	(D) 0.4 mA	(E) 0.8 mA					
34.	The compound	semiconductor use	d for making LED	s of different colo	urs is					
	(A) Gallium Ars	senide – Phosphide	(B) Ind	lium Arsenide – Ph	osphide					
	(C) Indium Arse	nide – Selenide	(D) Ga	llium Arsenide – S	elenide					
	(E) Scandium A	rsenide – Phosphic	le							

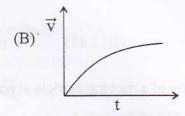
11

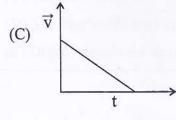
	(A) power amplifier	(B) voltage amplifier	(C) full wave rectifier
	(D) half-wave rectifier	(E) oscillator	1 (18) 1 22 (18) (6)
36.		signal of frequency ω_m is ter in it rejects the frequencies	
	(A) ω_c and ω_m (D) $\omega_c - \omega_m$ and ω_c	(B) $\omega_c - \omega_m$ and $\omega_c + \omega_m$ (E) $\omega_c + \omega_m$ and ω_c	(C) ω_m and $2\omega_c$
37.	Pick out the INCORREC	T statement from the following	ing
	(A) Speech signal require	s a bandwidth of 2800 Hz	
	(B) The approximate band	dwidth to transmit music is 2	20 kHz
	(C) The bandwidth of vid	eo signals required to transn	nit pictures is 4.2 MHz
	(D) The bandwidth usual	ly allocated to transmit TV s	ignals is 6 MHz
	(E) Digital signals are usu	ually in the form of sine wav	res
		Space for rough work	

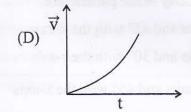
38.	A physical qua	intity A on multiplica	tion with veloci	ity results in another	quantity B. If
	the quantity B is	is energy, then the qu	antity A is		
	(A) mass	(B) momentum	(C) force	(D) acceleration	(E) power
39.	If the percentag	ge errors in the measu	rements of mas	s, length and time are	1%, 2% and
	3% respectivel	ly, then the maximu	m permissible	error in the measure	ement of the
	acceleration of	a particle is			
-wijo	(A) 8%	(B) 9%	(C) 6%	(D) 10%	(E) 2%
40.	The radius of figures is	a circular plate is 1	.05 m. Its area	(in m ²) up to correc	et significant
	(A) 3.47	(B) 3.475	(C) 3.467	(D) 3.82	(E) 3.825
41.	The velocity of	a moving particle at	any instant is	$\hat{i}+\hat{j}$. The magnitude \hat{i}	and direction
	of the velocity	of the particle are			
	(A) 2 units and	145° with the x-axis			
	(B) 2 units and	130° with the z-axis			
	(C) $\sqrt{2}$ units a	and 45° with the x-axi	s		
	(D) $\sqrt{2}$ units a	and 60° with the y-axi	s		
	(E) 2 units and	160° with the x-axis			
-	1	Space f	or rough work	1	

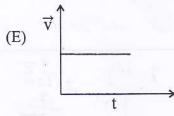
A hammer is dropped into a mine. Its velocities at depths d, 2d and 3d are in the ratio


- (A) 1:2:3
- (B) $1:\sqrt{2}:\sqrt{3}$
- (C) 1:4:9 (D) 6:3:2
- (E) 1:1:1


The stopping distance of a moving vehicle is proportional to the 43.


X (A) initial velocity


- (B) cube of the initial velocity
- (C) square of the initial velocity
- (D) cube root of the initial velocity
- (E) square root of the initial velocity


When a body starts from rest and moves with a constant acceleration, the velocity-44, time graph for its motion is

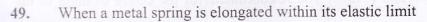
- A wooden block of mass 10 kg is moving with an acceleration of 3 ms⁻² on a rough floor. If the coefficient of friction is 0.3, then the applied force on it is $(g=10\,\mathrm{ms}^{-2})$
 - (A) 10 N
- (B) 30 N
- (C) 80 N
- (D) 60 N
- (E) 65 N

46.	Which	one of th	he following	statement	is	INCORRECT	?
-----	-------	-----------	--------------	-----------	----	-----------	---

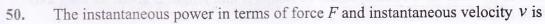
- (A) The state of rest or uniform linear motion both imply zero acceleration.
- (B) A net force is needed to keep a body in uniform motion.
- (C) Inertia means resistance to change.
- (D) The rate of change of momentum is proportional to the applied force.
- (E) Momentum is a vector quantity.
- On a conveyor belt moving with a speed u, sand falls at a constant rate $\left(\frac{dm}{dt}\right)$, where 47. m is the mass of sand. The extra force required to maintain the speed of the belt is

(A) $m \left(\frac{du}{dt} \right)$ (B) mu (C) $\left(\frac{dm}{dt} \right) / u$ (D) $u \left(\frac{dm}{dt} \right)$ (E) $\frac{1}{m} \left(\frac{du}{dt} \right)$

Area under the force-time graph gives the change in 48.


(A) velocity

(B) acceleration


(C) linear momentum

(D) angular momentum

(E) impulsive force

- (A) work is done by the spring
- (B) potential energy is stored in it
- (C) its potential energy is lost
- (D) its total energy remains constant
- (E) its kinetic energy is increased

(A)
$$P = F \cdot t$$

(B)
$$P = F \cdot v$$

(C)
$$P = F \cdot v^{-}$$

(D)
$$P = F \cdot v^{-2}$$

(B)
$$P = F \cdot v$$
 (C) $P = F \cdot v^{-1}$ (D) $P = F \cdot v^{-2}$ (E) $P = F \cdot v \cdot t^{-1}$

(D) $5 \times 10^3 \text{ N}$	m^{-1}	2			
		(E) $3 \times 10^3 \text{ N}$	m^{-1}	A. ((10) =	
			the ground rebound	ds to a height	$\frac{h}{4}$
after striking th		the attending of			
(A) $\frac{1}{4}$	(B) $\frac{3}{4}$	(C) $\frac{1}{2}$	(D) $\frac{1}{8}$	(E) $\frac{3}{8}$	
A solid metal	ring and a disc	of same radius	s and mass are rot	ating about th	heir
		frequency. The	ratio of their resp	pective rotation	onal
(A) 1:1	(B) 1:2	(C) 2:1	(D) 1:4	(E) 4:1	
respectively (0					
system is $(A) \frac{1}{3}$	(B) $\frac{2}{3}$	(C) $-\frac{1}{3}$	$(D)-\frac{2}{3}$	$(E)\frac{1}{6}$	
Radius of gyra symmetry is	tion of a solid cy	linder of radius	R and length L about	ut its long axi	s of
(A) R	(B) $\frac{R}{\sqrt{2}}$	(C) $\sqrt{2}R$	(D) $\frac{R}{2}$	(E) 2R	
	Sr	pace for rough work			
	(A) $\frac{1}{4}$ A solid metal diameters with kinetic energy (A) 1:1 The X and Y respectively (C system is $(A) \frac{1}{3}$ Radius of gyra symmetry is	(A) $\frac{1}{4}$ (B) $\frac{3}{4}$ A solid metal ring and a disc diameters with same angular kinetic energy values is (A) 1:1 (B) 1:2 The X and Y coordinates of respectively $(0,0)$, $(1,0)$ and (-3) system is (A) $\frac{1}{3}$ (B) $\frac{2}{3}$ Radius of gyration of a solid cysymmetry is (A) R (B) $\frac{R}{\sqrt{2}}$	(A) $\frac{1}{4}$ (B) $\frac{3}{4}$ (C) $\frac{1}{2}$ A solid metal ring and a disc of same radius diameters with same angular frequency. The kinetic energy values is (A) 1:1 (B) 1:2 (C) 2:1 The X and Y coordinates of the three partice respectively $(0,0)$, $(1,0)$ and $(-2,0)$. The X-coordinates of the three partice respectively $(0,0)$, $(1,0)$ and $(-2,0)$. The X-coordinates of gyration of a solid cylinder of radius symmetry is (A) R (B) R (C) R	A solid metal ring and a disc of same radius and mass are rot diameters with same angular frequency. The ratio of their respective energy values is (A) 1:1 (B) 1:2 (C) 2:1 (D) 1:4 The X and Y coordinates of the three particles of masses m , respectively $(0,0)$, $(1,0)$ and $(-2,0)$. The X-coordinate of the cent system is (A) $\frac{1}{3}$ (B) $\frac{2}{3}$ (C) $-\frac{1}{3}$ (D) $-\frac{2}{3}$ Radius of gyration of a solid cylinder of radius R and length L abore symmetry is	(A) $\frac{1}{4}$ (B) $\frac{3}{4}$ (C) $\frac{1}{2}$ (D) $\frac{1}{8}$ (E) $\frac{3}{8}$ A solid metal ring and a disc of same radius and mass are rotating about to diameters with same angular frequency. The ratio of their respective rotation kinetic energy values is (A) 1:1 (B) 1:2 (C) 2:1 (D) 1:4 (E) 4:1 The X and Y coordinates of the three particles of masses m , $2m$ and $3m$ respectively $(0,0)$, $(1,0)$ and $(-2,0)$. The X-coordinate of the centre of mass of system is (A) $\frac{1}{3}$ (B) $\frac{2}{3}$ (C) $-\frac{1}{3}$ (D) $-\frac{2}{3}$ (E) $\frac{1}{6}$ Radius of gyration of a solid cylinder of radius R and length L about its long axis symmetry is (A) R (B) $\frac{R}{\sqrt{2}}$ (C) $\sqrt{2}R$ (D) $\frac{R}{2}$ (E) $2R$

A ball with 103J of kinetic energy collides with a horizontally mounted spring. If the

maximum compression of the spring is 50 cm, then the spring constant of the spring is

51.

56.	When no extern	nal torque acts on a	rotating system,		
	(A) angular me	omentum of the sys	stem is not conserv	red	
	(B) its rotation	nal kinetic energy is	s conserved		
	(C) its rotation	nal kinetic energy is	s independent of m	oment of inertia	ally or a second
	(D) its rotation	nal kinetic energy is	s directly proportio	nal to moment of	inertia
	(E) its rotation	nal kinetic energy is	s inversely proport	ional to moment o	of inertia
57.	If T be the tin	me period of a pla	anet around the Su	n and d is its mean	an distance from
		according to Kepler			
	(A) $T \propto d$	(B) $T \propto d^2$	$(C) T^2 \propto d^3$	(D) $T^2 \propto d$	(E) $T^2 \propto d^{-3}$
58.		inks to half of its pacceleration due to			half of its actual
	(A) 4g	(B) g	(C) 2g	(D) $\frac{g}{2}$	(E) 3g
59.		ntical spheres each	W 0.00	171 100	each other, then
	the force of att $(A) r^2$	raction between the (B) r^4	(C) r^6	(D) r^{-2}	(E) r^{-4}
60.	With the increa	ase of temperature			
	(A) surface to	ension of liquid inc	reases		
	(B) viscosity	of gases decreases			
	(C) viscosity	of liquids increases	S Savino along		
	(D) both the s	surface tension and	viscosity of liquid	s increase	
	(E) both the s	surface tension and	viscosity of liquid	decrease	proc 1 (CD)
		Spa	ce for rough work		

	The TRUE statement is		
	(A) Young's modulus of	a wire depends on its length	
	(B) The unit of Young's r	modulus is Nm ⁻¹	
	(C) Dimensional formula	of stress is same as that of force	e
	(D) The unit of strain is k	gm^{-2}	
	(E) Compressibility is the	e reciprocal of bulk modulus	milia (Rusers en 15)
o.	When a body is strained, en	nergy stored per unit volume is	(Y = Young's modulu
	(stress)	(B) $\frac{Y \times strain}{}$	(C) $\frac{(stress)^2}{2Y}$
	(A) $\frac{(stress)}{Y}$	(B) 2	(C) <u>2Y</u>

- According to equation of continuity when a liquid flows through a tube of variable cross section a with variable velocity v, the quantity that remains constant is
 - $(A) av^2$
- (B) a^2v
- (C) av
- (D) $\frac{a}{v}$

- Two thermally insulated identical vessels A and B are connected through a stopcock. 64. A contains a gas at STP and B is completely evacuated. If the stopcock is suddenly opened then
 - (A) temperature is halved
 - (B) internal energy of the gas is halved
 - (C) internal energy of the gas and pressure are halved
 - (D) temperature and internal energy of the gas remain the same
 - (E) pressure and internal energy of the gas remain the same

(A) adiabatic pr		(B) cyclic pro			
(C) isobaric pro (E) isothermal p		(D) isochoric process			
When the tempe 25%. The requir 50% is	rature of the sour ed increase in ten	rce of a Carnot e	ngine is at 400 K, source to increase	its efficiency the efficiency t	
(A) 800 K	(B) 600 K	(C) 100 K	(D) 400 K	(E) 200 K	
	diatomic gas is h reases the internal		t pressure, fractions is	of heat energ	
(A) $\frac{5}{7}$	(B) $\frac{7}{5}$	(C) $\frac{3}{5}$	(D) $\frac{5}{3}$	(E) $\frac{2}{3}$	
The ratio of the room temperature		ues of 4g of hydr	ogen (H ₂) to 7g of	nitrogen (N ₂)	
(A) 4:1	(B) 1:4	(C) 4:7	(D) 7:4	(E) 1:1	
8 11 11	Spac	ce for rough work			

69. A planet with radius R and acceleration due to gravity g, will have atmosphere only if r.m.s. speed of air molecules is less than

(A) 1.414√gR
(B) 1.732√gR
(C) 2√gR
(D) 3.14√gR
(E) 2.75√gR

70. If the ratio of the acceleration due to gravity on the surface of earth to that on the surface of the moon is 6:1, then the ratio of the periods of a simple pendulum on their surfaces is

(A) 1:1
(B) 1:6
(C) 1:3
(D) 1:√6
(E) 1:√3
71. The velocity of a transverse wave propagating on a stretched string represented by the equation, y = 0.5 sin (π/2 t + π/3 x) is (where x and y are in metres and t in seconds)

- $(A) 0.5 \,\mathrm{ms^{-1}}$
- (B) 1.0 ms⁻¹
- $(C) 2 \, \text{ms}^{-1}$
- (D) $3 \,\mathrm{ms}^{-1}$

(E) 1.5 ms⁻¹

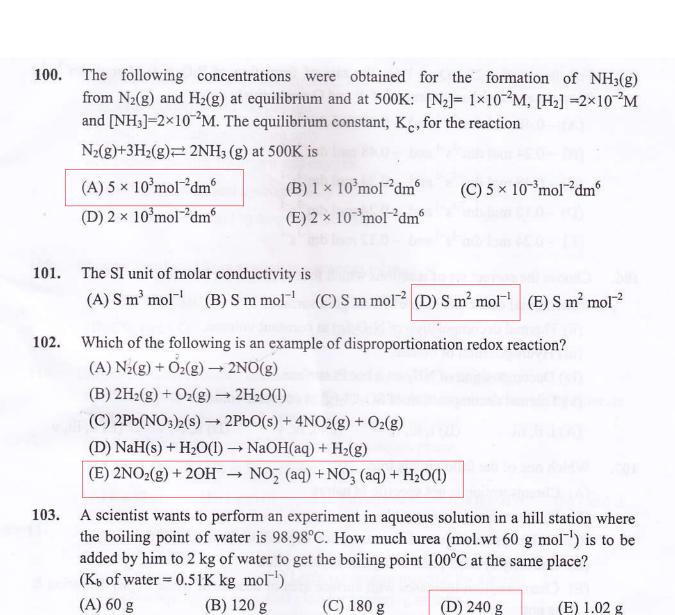
72. The kinetic energy of a particle of mass m executing linear simple harmonic motion with angular velocity ω and amplitude a is $\frac{1}{4}ma^2\omega^2$ at a distance of ______ from the mean position.

- (A) $\frac{a}{\sqrt{2}}$
- (B) $\frac{a}{2}$
- (C) $\frac{a}{4}$
- (D) a
- (E) $\frac{a}{8}$

73.	The reagent that is used to	convert but-2-yne to tra	ns-but-2-ene is
	(A) $H_2/Pd/C$	(B) NaBH ₄	(C) Sn/HCl
	(D) Na/liquid NH ₃	(E) Zn-Hg/HC	TOTAL HORROWAN
74.	Compound 'A' is obtained in dry ether followed by tro		yl chloride with magnesium metal t is the compound 'A'?
w	(A) Toluene	(B) Benzyl alcohol	(C) Phenol
	(D) Benzene	(E) Benzaldehyde	
75.	The correct increasing ord	er of boiling points of the	e following compounds is
	(A) $CH_2Br_2 < CH_3Br < C$	HBr ₃ < CH ₃ Cl	
	(B) $CH_2Br_2 < CHBr_3 < C$	H ₃ Br < CH ₃ Cl	Consequity a season (C)
	(C) $CH_3Cl < CH_3Br < Cl$	$H_2Br_2 < CHBr_3$	
	(D) $CH_3Cl < CHBr_3 < CHBR_3$	$H_3Br < CH_2Br_2$	
	(E) $CHBr_3 < CH_2Br_{12} < CH_2Br_{13}$	$CH_3Br < CH_3Cl$	
76.	'A' and 'B' liberate hydroxide, compound 'B'	ogen gas with sodium in alone dissolves. Com	ecular formula C ₇ H ₈ O. Compound metal. When treated with sodium pound 'C' is inert towards both 'A', 'B' and 'C' are respectively
	(A) Cresol, benzyl alcoho (B) Benzyl alcohol, cresol	and anisole	
	(C) Benzyl alcohol, anisol		
	(D) Cresol, anisole and be(E) Anisole, cresol and be		
1	(L) Thinsole, eleser and el	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

- 77. The suitable Grignard reagent used for the preparation of 2-methylpropan-1-ol using methanal is
 - (A) CH₃-CH₂-CH₂MgBr
- (B) CH₃-CH₂-CH₂-CH₂MgBr
- (C) CH₃-CH(CH₃)-CH₂MgBr
- (D) $(CH_3)_3 C MgBr$
- (E) CH₃-CH(CH₃)-MgBr
- Isopropylbenzene (cumene) is oxidized in the presence of air to give compound 'X' which on hydrolysis in the presence of acids gives compounds 'Y' and 'Z'. Compounds 'X', 'Y' and 'Z' are respectively
 - (A) benzyl alcohol, benzaldehyde, ethanol
 - (B) cumene hydroperoxide, phenol, acetaldehyde
 - (C) cumene hydroperoxide, benzaldehyde, acetone
 - (D) cumene hydroperoxide, phenol, acetone
 - (E) cumene hydroperoxide, benzaldehyde, acetaldehyde

A research scholar returned to the laboratory after the lock down due to Covid-19. He kept acetone, benzaldehyde, acetaldehyde and diethyl ketone in four different bottles. The bottles contained only the label as *P*, *Q*, *R* and *S*. He forgot which bottle contained which compound. Compounds *P* and *R* only underwent iodoform test. Compound *R* alone gave reddish brown precipitate with Fehling's reagent. Compounds *Q* and *R* alone underwent Tollen's test. Compound *S* did not answer any of the above tests.


Identify the compounds P, Q, R and S.

- (A) P-diethyl ketone; Q-benzaldehyde; R-acetaldehyde; S-acetone
- (B) P-acetone; Q-benzaldehyde; R-acetaldehyde; S-diethyl ketone
- (C) P-acetone; Q-acetaldehyde; R-benzaldehyde; S-diethyl ketone
- (D) P-acetaldehyde; Q-acetone; R-diethyl ketone; S-benzaldehyde
- (E) P-benzaldehyde; Q-diethyl ketone; R-acetone; S-acetaldehyde
- 80. The increasing order of acid strength of the following carboxylic acids is
 - (A) CICH₂-CH₂-COOH < CICH₂COOH < NC CH₂COOH < CHCl₂COOH
 - (B) CICH₂-COOH < NC CH₂COOH < CICH₂CH₂COOH < CHCl₂COOH
 - (C) $CICH_2$ - CH_2 -COOH < $CHCl_2$ -COOH < $CICH_2$ -COOH < NC- CH_2 -COOH
 - (D) NC-CH $_2$ -COOH < Cl-CH $_2$ COOH < CH-Cl $_2$ COOH < Cl-CH $_2$ COOH
 - (E) $CICH_2CH_2$ - $COOH < CHCl_2COOH < CICH_2COOH < NC-CH_2COOH$
- 81. Which one of the following is not correct with respect to properties of amines?
 - (A) pK_b of aniline is more than that of methylamine.
 - (B) Ethylamine is soluble in water whereas aniline is not.
 - (C) Ethanamide on reaction with Br2 and NaOH gives ethylamine.
 - (D) Ethylamine reacts with nitrous acid to give ethanol.
 - (E) Aniline does not undergo Friedel-Crafts reaction.

	$R_2NH_2^+, R_3N$				
		$R_2NH_2^+ < RNH_3^+$. , 3	$H^+ < RNH_3^+ < R_2NH_3^+$	H_2^+
	(C) $R_2NH_2^+$ <	$RNH_3^+ < R_3NH^+$	(D) RNH	$_{3}^{+} < R_{2}NH_{2}^{+} < R_{3}NH_{3}^{+}$	H ⁺ //
	(E) $RNH_3^+ < F$	$R_3NH^+ < R_2NH_2^+$		un und La film Ö s ete i	
83.	The conversion HBr in the pre-	on of benzene dia esence of copper p	zonium chloric powder is called	de to bromobenzen i	e by treating with
	(A) Sandmeye	r reaction	(B) Gattern	mann reaction	
	(C) Wurtz read	etion		ann reaction	
	(E) Gabriel syr	nthesis			
84.	Which one of	the following state	ements is TRUE	E with regard to glu	cose?
				<i>3</i>	
	(A) It gives Sc	hiff's test		<u>Aller</u> To gate a series	
	(A) It gives Sc(B) It forms ac(C) Its pentaac	hiff's test Idition product wi etate does not read	th NaHSO₃ ct with NH2OH	e files to refer of acids	
	(A) It gives So(B) It forms at(C) Its pentage(D) It does not	hiff's test Idition product with tetate does not read undergo mutarota	th NaHSO ₃ ct with NH ₂ OH ation	e him to take prince	
	 (A) It gives Sc (B) It forms ac (C) Its pentaac (D) It does not (E) β- form of 	hiff's test Idition product with tetate does not read undergo mutarota	th NaHSO ₃ ct with NH ₂ OH ation	e files to refer of acids	
	(A) It gives So(B) It forms at(C) Its pentage(D) It does not	hiff's test Idition product with tetate does not read undergo mutarota	th NaHSO ₃ ct with NH ₂ OH ation	e him to take prince	
85.	 (A) It gives Sc (B) It forms ac (C) Its pentaac (D) It does not (E) β- form of at 303K 	hiff's test Idition product with tetate does not read undergo mutarota	th NaHSO ₃ ct with NH ₂ OH ation ed by crystallis	e him to take prince	
85.	 (A) It gives Sc (B) It forms ac (C) Its pentaac (D) It does not (E) β- form of at 303K 	chiff's test Idition product with tetate does not read undergo mutarota glucose is obtain	th NaHSO ₃ ct with NH ₂ OH ation ed by crystallis	e him to take prince	
85. 86.	 (A) It gives Sc (B) It forms ac (C) Its pentaac (D) It does not (E) β- form of at 303K Fibrous protein (A) keratin 	chiff's test didition product winderate does not read undergo mutarotal glucose is obtain present in muscle (B) albumin	th NaHSO ₃ ct with NH ₂ OH ation ed by crystallis es is (C) insulin	sation from conc. s	olution of glucose (E) histidine
	 (A) It gives So (B) It forms and (C) Its pentage (D) It does not (E) β- form of at 303K Fibrous protein (A) keratin The drug use 	chiff's test didition product winderate does not read undergo mutarotal glucose is obtain a present in muscle (B) albumin and to inhibit these	th NaHSO ₃ ct with NH ₂ OH ation ed by crystallis es is (C) insulin	sation from conc. s (D) myosin which catalyse the	olution of glucose (E) histidine e degradation of
	 (A) It gives So (B) It forms and (C) Its pentage (D) It does not (E) β- form of at 303K Fibrous protein (A) keratin The drug use noradrenaline in 	chiff's test didition product winderstate does not read undergo mutarotal glucose is obtain a present in muscle (B) albumin and to inhibit the second control of the contro	th NaHSO ₃ ct with NH ₂ OH ation ed by crystallis es is (C) insulin e enzymes w	(D) myosin which catalyse the	olution of glucose (E) histidine e degradation of
	 (A) It gives So (B) It forms and (C) Its pentance (D) It does not (E) β- form of at 303K Fibrous protein (A) keratin The drug use noradrenaline in (A) phenelzine (D) terfenadine 	chiff's test didition product winderstate does not read undergo mutarotal glucose is obtain a present in muscle (B) albumin and to inhibit the second control of the contro	th NaHSO ₃ ct with NH ₂ OH ation ed by crystallis es is (C) insulin e enzymes w (B) prontosil E) chloramphes	(D) myosin which catalyse the (C) cimetidinicol	olution of glucose (E) histidine e degradation of

	(A) C_3H_8	$(B)C_2H_2$	(C) C ₂ H ₄	(D) C ₂ H ₆	(E) C ₃ H
90	TI 1	4740,6150			
89.	$m_s = +\frac{1}{2}$ is	electrons in	an atom that may ha	ive the quantum r	numbers $n=3$
7	/ 2	d can a re-desi	ASSESS OF LA LONG		
	(A) 32	(B) 9	(C) 18	(D) 16	(E) 8
90.	"No two electronis known as	ons in an aton	n can have the same	set of four quantur	m numbers."]
	(A) Hund's ru	le	(B) Pauli's exclusio	n principle (C) A	ufbau princip
	(D) Heisenber	g's principle	(E) Fajan's rule		
91.	The first ionisat	ion enthalpy i	s the least in		
	(A) Germaniu	m	(B) Antimony	(C) Tellu	rium
	(D) Arsenic	The best Fig. 10	(E) Bismuth		
92.	Predict in which	of the follow	ring, entropy decrease	s:	
	(A) A liquid co				
	(B) Temperatu	re of a crystal	line solid is raised fro	m 0K to 115K.	
			$O_3(s) + CO_2(g) + H_2O$		
	(D) $H_2(g) \rightarrow 2$	40	0.84 (8)7 (80.4		
	(E) $2SO_3(g) -$	\Rightarrow 2SO ₂ (g) + C) ₂ (g)		
93.	In which one of	the following	an ² hahaidinati	L toatt and	
	m which one of	the following,	sp^2 hybridisation is	involved in the cei	ntral atom?

94.	In which one of the following	molecules, the central a	ntom has expanded	octet?
		B) Boron trichloride	(C) Nitrogen di	
	(D) 0	E) Sulphuric acid	(o) I mogen ar	LA
95.	A cycle tube will burst if the ve If at 1 bar pressure the air occu- expanded at the same temperat	ipies 500 mL, then iin t	eeds 1L at the room to what pressure ca	n temperature. an the tube be
	(A) 2 bar (B) 1.5 bar	(C) 0.5 bar	(D) 0.002 bar	(E) 1.2 bar
96.	The ratio of the actual molar verthe gas.	volume of a gas to the	ideal molar volum	e is of
	(A) co-volume(C) critical volume(E) compressibility factor	(B) van der Waa (D) molar gas co		
97.	Enthalpy change is always nega	ative for which one of the	ne following proce	sses?
	(A) Enthalpy of ionisation(C) Enthalpy of vapourisation(E) Enthalpy of combustion	(B) Enthalpy of (D) Enthalpy of		(A) (C) = 1
98.	The enthalpy change for the e+40.32 kJmol ⁻¹ . What is the value $(R = 8.3 \text{ JK}^{-1} \text{mol}^{-1})$	evaporation of a liquidalue of internal energy	l at its boiling po change for the abo	int 127°C is ve process at
	(A) -37.0 kJmol^{-1}	(B) +43.0 kJmol	-light - in the	
	(C) +37.0 kJmol ⁻¹ (E) +43.64 kJmol ⁻¹	(D)-43.0 kJmol		
99.	In which one of the following eq	uilibria Δn_g value is ze	ro?	
	(A) $2NOCl(g) \leftrightharpoons 2NO(g) + Cl_2(g)$ (C) $CO_2(g) + C(s) \leftrightharpoons 2CO(g)$ (E) $N_2O_4(g) \leftrightharpoons 2NO_2(g)$	g) (B) Ni(s) +	$4CO(g) \leftrightarrows Ni(CO)$ $Br_2(g) \leftrightarrows 2HBr(g)$)) ₄ (g)
	Sp	ace for rough work		

104. The vapour pressure of pure benzene at a certain temperature is 0.850 bar. A non-volatile, non-electrolyte solid weighing 1.0 g when added to 39.0 g of benzene (molar mass 78 g mol⁻¹), vapour pressure of the solution is reduced to 0.845 bar. What is the molar mass of the solid substance?

(A) 340 g mol⁻¹

(B) 170 g mol⁻¹

(C) 240 g mol⁻¹

(D) 270 g mol⁻¹

(E) 370 g mol⁻¹

- 105. For the reaction $2P + Q \rightleftharpoons P_2Q$, the rate of formation of P_2Q is 0.24 mol dm⁻³s⁻¹. Then the rates of disappearance of P and Q respectively are
 - $(A) 0.48 \text{ mol dm}^{-3} \text{s}^{-1} \text{ and } -0.48 \text{ mol dm}^{-3} \text{s}^{-1}$
 - (B) $-0.24 \text{ mol dm}^{-3} \text{s}^{-1} \text{ and } -0.48 \text{ mol dm}^{-3} \text{s}^{-1}$
 - (C) $-0.48 \text{ mol dm}^{-3}\text{s}^{-1}$ and $-0.24 \text{ mol dm}^{-3}\text{s}^{-1}$
 - (D) $-0.12 \text{ mol dm}^{-3} \text{s}^{-1}$ and $-0.24 \text{ mol dm}^{-3} \text{s}^{-1}$
 - (E) $-0.24 \text{ mol dm}^{-3} \text{s}^{-1}$ and $-0.12 \text{ mol dm}^{-3} \text{s}^{-1}$
- 106. Choose the correct set of reactions which follow first order kinetics:
 - (i) Thermal decomposition of HI on gold surface.
 - (ii) Thermal decomposition of N₂O₅(g) at constant volume.
 - (iii) Hydrogenation of ethene.
 - (iv) Decomposition of NH3 on a hot Pt surface.
 - (v) Thermal decomposition of SO₂Cl₂(g) at constant volume.
 - (A) i, ii, iii
- (B) i, iii, iv
- (C) i, iv, v
- (D) ii, iv, v
- (E) ii, iii, v

- 107. Which one of the following is true?
 - (A) Chemisorption is not specific in nature
 - (B) Physisorption is irreversible
 - (C) Both physisorption and chemisorption depend on the nature of the gas
 - (D) Enthalpy of adsorption is high in physisorption
 - (E) Chemisorption increases with surface area of adsorbent while in physisorption it is not

					y		de, the produc	
		sodium zinc						
		sodium zinc						d :L (O)
		sodium zinc	166.5	100-				
		sodium zinc						
109.	'Syn	gas' produce	ed from s	ewage is a	gaseous mixt	ure of		
		CH ₄ and C ₂ l			(B) CO and		(C)	CO and CH ₄
	(D)	CS ₂ and CO)		(E) CS ₂ and	CH ₄	Benero wer ha	
	(ii) (iii)	PCl ₅ is prepa The complete PCl ₅ has squ	ared by the e hydroly uare pyra	he reaction ysis of PCl _s midal struc	true statement of white phose gives phosple cture in gaseo cule are equiv	sphorus horic act us phase	with excess o	of dry chlorine.
	(ii) (iii) (iv)	PCl ₅ is prepa The complete PCl ₅ has squ All the five l	ared by the hydroly uare pyra bonds in	he reaction ysis of PCl midal struct PCl ₅ molec	of white phoson gives phosple cture in gaseocule are equiv	sphorus horic aci us phase valent.	with excess o	16. In volid
	(ii) (iii) (iv) (A)	PCl ₅ is preparate complete PCl ₅ has squall the five li and iii	ared by the hydroly uare pyrate bonds in (B) i and	he reaction ysis of PCl ₃ umidal struct PCl ₅ molect nd iii	of white phos gives phosple cture in gaseo	sphorus horic aci us phase valent.	with excess o	of dry chlorine. (E) i and ii
11.	(ii) (iii) (iv) (A) Mate	PCl ₅ is prepared in prepared	ared by the hydroly uare pyrate bonds in (B) i and	he reaction ysis of PCl ₃ midal struct PCl ₅ molect nd iii their uses.	of white phoses gives phospleture in gaseo cule are equivalent (C) iii and i	sphorus horic aci us phase valent.	with excess of id. e. (D) ii and iv	16. In volid
11.	(i) (ii) (iii) (iv) (A) Match	PCl ₅ is preparate complete. PCl ₅ has squall the five lii and iii h the substant Silicones	ared by the hydroly uare pyrate bonds in (B) i and	he reaction ysis of PCl ₅ umidal struct PCl ₅ molect and iii their uses. (i) Crac	of white phoses gives phosple ture in gaseo cule are equivalent (C) iii and in the cking of hydro	sphorus horic aci us phase valent. v	with excess of id. e. (D) ii and iv	16. In volid
11.	(ii) (iii) (iv) (A) Mate	PCl ₅ is prepared in prepared	ared by the hydroly uare pyrate bonds in (B) i and	he reaction ysis of PCl ₃ midal struct PCl ₅ molect nd iii their uses. (i) Cract (ii) Light	of white phoses gives phosple ture in gaseo cule are equivalent (C) iii and in the cking of hydrothe composite	sphorus horic aci us phase valent. v	with excess of id. e. (D) ii and iv s I for aircraft	16. In volid
11.	(i) (ii) (iii) (iv) (A) Matc. (a) (b)	PCl ₅ is preparate complete. PCl ₅ has squall the five lii and iii the substant Silicones Zeolites	ared by the hydroly uare pyrate bonds in (B) i and	he reaction ysis of PCl ₅ umidal struct PCl ₅ molect nd iii their uses. (i) Cract (ii) Light (iii) Flu	of white phoses gives phosple ture in gaseo cule are equivalent (C) iii and in the cking of hydroty for soldering as for soldering of the composite ax for soldering of the comp	sphorus horic aci us phase valent. v ocarbons material ng metal	with excess of id. e. (D) ii and iv s I for aircraft s	16. In volid
11.	(i) (ii) (iii) (iv) (A) Mate a) b) c)	PCl ₅ is preparate complete. PCl ₅ has square All the five line in and iii the substant Silicones Zeolites Quartz	ared by the hydroly uare pyrathene bonds in (B) i and the control of the control	he reaction ysis of PCl ₅ midal struct PCl ₅ molect nd iii their uses. (i) Cract (ii) Lig. (iii) Flu (iv) Wa	of white phoses gives phosple ture in gaseo cule are equivalent (C) iii and in the cking of hydrothe composite	sphorus horic aci us phase valent. v ocarbons material ng metal f fabrics	with excess of id. e. (D) ii and iv s I for aircraft s	16. In volid
11.	(i) (ii) (iii) (iv) (A) Matc (a) (b) (c) (d)	PCl ₅ is preparate complete. PCl ₅ has squall the five line in and iii the the substant Silicones Zeolites Quartz Borax	ared by the hydroly uare pyrathen bonds in (B) i and the control of the control o	he reaction ysis of PCl ₅ midal struct PCl ₅ molect nd iii their uses. (i) Cract (ii) Ligi (iii) Flu (iv) Wa (v) Piez	of white phoses gives phosple ture in gaseo cule are equivalent (C) iii and in the chiral composite ax for soldering of coelectric materials.	sphorus horic aci us phase valent. v ocarbons material ng metal f fabrics	with excess of id. e. (D) ii and iv s I for aircraft s	16. In volid
11.	(i) (ii) (iii) (iv) (A) Matc. a) b) c) d) e)	PCl ₅ is preparate complete. PCl ₅ has squall the five line in and iii the substant Silicones Zeolites Quartz Borax Boron fibro	ared by the hydroly uare pyrate bonds in (B) i and the ces and the ces are sees	he reaction ysis of PCl ₃ midal struct PCl ₅ molect nd iii their uses. (i) Cract (ii) Ligi (iii) Flu (iv) Wa (v) Piez	of white phoses gives phosple ture in gaseo cule are equivalent (C) iii and in the chiral composite ax for soldering of the composite terproofing of the composit	sphorus horic aci us phase valent. v ocarbons material ng metal f fabrics	with excess of id. e. (D) ii and iv s I for aircraft s	16. In volid
11.	(i) (ii) (iii) (iv) (A) Matc (a) (b) (c) (d) (e) (A)	PCl ₅ is preparate complete. PCl ₅ has squall the five line in and iii the substant Silicones Zeolites Quartz Borax Boron fibre a)-(iv); b)-(iiii)	te hydroly te hydroly tuare pyra bonds in (B) i an threes and threes (ii); c)-(i) (i); c)-(iv)	he reaction ysis of PCl ₅ umidal struct PCl ₅ molect nd iii their uses. (i) Cract (ii) Ligi (iii) Flu (iv) Wa (v) Piez y; d)-(v); e)-	of white phose gives phosple ture in gaseo cule are equivalent (C) iii and in the chiral of the composite ax for soldering of terproofing of the composite expression of the composite of the com	sphorus horic aci us phase valent. v ocarbons material ng metal f fabrics	with excess of id. e. (D) ii and iv s I for aircraft s	16. In volid
11.	(i) (ii) (iii) (iv) (A) Matci a) b) c) d) e) (A) (B)	PCl ₅ is preparate complete PCl ₅ has squall the five I ii and iii has the substant Silicones Zeolites Quartz Borax Boron fibral-(iv); b)-(iii)	res (ii); c)-(iii); (ii); c)-(i)	he reaction ysis of PCl ₂ midal struct PCl ₅ molect nd iii their uses. (i) Cract (ii) Ligi (iii) Flu (iv) Wa (v) Piez (y; d)-(v); e) (y; d)-(iii); e) (y; d)-(iv); e) (y; d)-(iv); e)	of white phose gives phosple ture in gaseo cule are equivalent (C) iii and in the chiral of the composite ax for soldering of terproofing of the coelectric matterpoofing of the coelectric ma	sphorus horic aci us phase valent. v ocarbons material ng metal f fabrics	with excess of id. e. (D) ii and iv s I for aircraft s	16. In volid

(A) It can be prepared by the hydrolysis of I	poron trihalide
(B) It is not a protonic acid but acts as a Lev	wis acid
(C) It has a layer structure	and the party of t
(D) It is freely soluble in cold water	
(E) On heating above 370K it forms first yields B ₂ O ₃	metaboric acid which on further heating
113. The magnetic moment of a trivalent ion of a	metal with $Z = 24$ in aqueous solution is
(A) 3.87 BM (B) 2.84 BM (C) 1.7	3 BM (D) 4.90 BM (E) 5.92 BM
114. In the first row transition metals, the element	that exhibits only +3 oxidation state is
(A) zinc (B) scandium (C) nich	cel (D) titanium (E) iron
115. The metal that has the highest melting point	in the first series of transition elements is
(A) titanium (B) vanadium (C) chr	omium (D) iron (E) manganese
116. In which one of the following complexe electrolyte in aqueous solution?	s, the conductivity corresponds to 1:2
(A) Hexaamminecobalt(III) chloride	myD' ni shquid subteniullo prij
(B) Tetraamminedichlorocobalt(III) chlorid	e The Haller of the Control of the C
(C) Pentaamminechlorocobalt(III) chloride	rill. Managing appearance and being
(D) Triamminetriaquachromium(III) chloric	le samulta , u
(E) Diamminesilver(I) dicyanoargentate(I)	

	(A) $[Ag_2(S_2O_3)_2]^{3^-}$	(B) [Ag(S ₂ O ₃) ₂]	$(C) [Ag(S_2O_3)_2]^{3+}$
	(D) $[Ag_2(S_2O_3)_2]^{3+}$	(E) [Ag(S ₂ O ₃) ₃]	
118.	Which one of the following	; is an ore of aluminium?	
	(A) Kaolinite (B) Sider	rite (C) Malachite	(D) Calamine (E) Haematite
119.	In the estimation of nitrog cannot be applied to	en present in an organic	compound, Kjeldahl's method
	(A) aniline (B) toluid	line (C) urea (I	O) pyridine (E) benzylamine
120.	Among the following, the al	lkene that exhibits optical	isomerism is
	(A) 3-methyl-2-pentene	(B) 4-methyl-1-pentene	
			, , , , , , , , , , , , , , , , , , ,