

293

5120031



Total No. of Questions: 24
Total No. of Printed Pages: 3



Part - III





(English Version)

Time: 3 Hours

Max. Marks: 75

**Note**: This question paper consists of three Sections - A, B and C.

## SECTION - A

I. Very short answer type questions :

10x2=20

(i) Answer all the questions.



- (ii) Each question carries two marks.
- If the length of the tangent from (2, 5) to the circle  $x^2+y^2-5x+4y+k=0$  is  $\sqrt{37}$  then find k.
- 2. Find the equation of the circle whose end points of a diameter are (1, 2), (4, 6).
- 3. Find the equation of the common chord of the circles  $x^2+y^2-4x-4y+3=0$ ,  $x^2+y^2-5x-6y+4=0$ .
- Find the value of k if the line 2y=5x+k is a tangent to the parabola  $y^2=6x$ .
- If the eccentricity of a hyperbola is  $\frac{5}{4}$ , then find the eccentricity of its conjugate hyperbola.
- 6. Evaluate  $\int \frac{1}{7x+3} dx$  on  $1 \subset \mathbb{R} \setminus \left\{-\frac{3}{7}\right\}$ .



- 7: Evaluate  $\int \sqrt{1-\sin 2x} \, dx$  on  $I \subset \left[2n\pi \frac{3\pi}{4}, 2n\pi + \frac{\pi}{4}\right], n \in \mathbf{Z}$ .
- Evaluate  $\int_0^4 |2-x| \, \mathrm{d}x$ .



9. Find  $\int_0^{\frac{\pi}{2}} \sin^{10} x \, dx$ .



**10.** Find the order and degree of the differential equation  $\frac{d^2y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{3}}$ .



## SECTION B

II. Short answer type questions:

5x4=20

- (i) Answer any five questions.
- (ii) Each question carries four marks.
- 71. Find the length of the chord intercepted by the circle  $x^2 + y^2 8x 2y 8 = 0$  on the line x+y+1=0.
- 12. Find the radical centre of the following circles.  $x^2+y^2-4x-6y+5=0$ ,  $x^2+y^2-2x-4y-1=0$ ,  $x^2+y^2-6x-2y=0$
- 13. Find the length of major axis, minor axis, latus rectum, eccentricity, coordinates of centre, foci and the equations of directrices of the ellipse  $9x^2 + 16y^2 = 144$ .
- 14. If the normal at one end of a latus rectum of the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  passes through one end of the minor axis, then show that  $e^4 + e^2 = 1$  (e is the eccentricity of the ellipse).
- 15. Find the equations of the tangents to the hyperbola  $x^2 4y^2 = 4$  which are (i) parallel (ii) perpendicular to the line x+2y=0.
- 16. Evaluate  $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx.$

17. Solve 
$$\frac{dy}{dx} - x \tan(y - x) = 1.$$



## **SECTION - C**

## III. Long answer type questions:



5x7 = 35

- (i) Answer any five questions.
- (ii) Each question carries seven marks.
- Show that the circles  $x^2+y^2-6x-2y+1=0$ ,  $x^2+y^2+2x-8y+13=0$  touch each other. Find the point of contact and the equation of common tangent at their point of contact.
- 19. If (2, 0), (0, 1), (4, 5) and (0, c) are concyclic then find c.
- 28. Prove that the area of the triangle inscribed in the parabola  $y^2 = 4ax$  is  $\frac{1}{8a}|(y_1-y_2)(y_2-y_3)(y_3-y_1)|$  sq. units where  $y_1$ ,  $y_2$ ,  $y_3$  are the ordinates of its vertices.
- 21. Obtain the reduction formula for  $\int \sin^n x \, dx$  for an integer  $n \ge 2$  and deduce  $\int \sin^4 x \, dx$ .

**22.** Evaluate 
$$\int \frac{2 \sin x + 3 \cos x + 4}{3 \sin x + 4 \cos x + 5} dx$$
.

23. Evaluate 
$$\int_0^1 \frac{\log(1+x)}{1+x^2} dx$$

**24.** Solve 
$$\sqrt{1+x^2} \sqrt{1+y^2} dx + xy dy = 0$$
.

