AP PGECET 2025 Mechanical Engineering Syllabus

Engineering Mathematics Syllabus

Linear Algebra	 Matrix algebra Systems of linear equations Eigenvalues and eigenvectors
Calculus	 Functions of a single variable Limit/continuity/differentiability Mean value theorems Evaluation of definite and improper integrals Partial derivatives Total derivative Maxima & minima Gradient Divergence & curl Vector identities Directional derivatives Line Surface Volume integrals Stokes Gauss & Green's theorems
Differential Equations	 First-order equations (linear and non-linear) Higher-order linear differential equations with constant coefficients Cauchy's & Euler's equations Initial & boundary value problems Laplace transforms Solutions of one-dimensional heat and wave equations & laplace equation
Complex Variables	 Analytic functions Cauchy's integral theorem Taylor & Laurent series
Probability & Statistics	 Definitions of probability & sampling theorems Conditional probability

	 Probability density function Mean/median/mode/standard deviation Random variables Exponential Poisson Normal & binomial distributions
Numerical Methods	 Numerical solutions of linear and non-linear algebraic equations Integration by trapezoidal and Simposon' rule Single & multi-step methods for differential equations

Applied Mechanics and Design Syllabus

Engineering Mechanics	 Free body diagrams and equilibrium Trusses & frames Virtual work Kinematics and dynamics of particles and rigid bodies in plane motion Including impulse and momentum (linear & angular) & energy formulations Impact
Strength of Materials	 Stress and strain Stress-strain relationship and elastic constants Mohr's circle for plane stress and plane strain Thin cylinders Shear force and bending moment diagrams Bending and shear stresses Deflection of beam Torsion of circular shafts Euler's theory of columns Strain energy methods Thermal stresses
Theory of Machines	Displacement

	 Velocity & acceleration analysis of plane mechanics Dynamic analysis of slider crank mechanism Gear trains Flywheels
Vibrations	 Free and forced vibration of single degree of freedom systems Effect of damping Vibration isolation Resonance The critical speed of shafts
Design	 Design for static and dynamic loading Failure theories Fatigue strength and the S-N diagram Principles of design of machine elements such as bolted Riveted and welded joints Shafts Spur gears Rolling and sliding contact bearings Brakes and clutches

Fluid Mechanics and Thermal Sciences Syllabus

Fluid Mechanics	 Fluid properties Fluid statics/ manometry/ buoyancy Control volume analysis of mass Momentum and energy Fluid acceleration Differential equations of continuity and momentum Bernoulli's equationns Viscous flow of incompressible fluids Boundary layer Elementary turbulent flow Flow through pipes
	Flow through pipesHead losses in pipes/ bends

Heat - Transfer	 Modes of heat transfer One-dimensional heat conduction Resistance concept Electrical analogy Unsteady heat conduction Fins Dimensionless parameters in free and forced convective heat transfer Various correlations for heat transfer Various correlations for heat transfer in flow over flat plates through pipes Thermal boundary layer Effect of turbulence Radiative heat transfer Black and grey surfaces Shape factors Network analysis Heat exchanger performance LMTD and NTU methods
Thermodynamics	 Zeroth, first, and second law of thermodynamics Thermodynamic systems and processes Carnot cycle Irreversibility and availability The behavior of ideal and real gases Properties of pure substances Calculation of work and heat in ideal processes Analysis of thermodynamic cycles related to energy conversion
Applications	 Power engineering Steam tables Rankine Brayton cycles with regeneration and reheat IC
Engines	Air standard ottoDiesel cycles
Refrigeration and Air Conditioning	Vapor refrigeration cycleHeat pumpsGas refrigeration

	 Reverse Brayton cycle Moist air Psychrometric chart / basic psychrometric processes
Turbomachinery	 Pelton wheel Francis and Kaplan turbines Impulse and reaction principles Velocity diagrams

Manufacturing and Industrial Engineering Syllabus

Engineering Materials	 Structure and properties of engineering materials Heat treatment Stress-strain diagrams for engineering materials
Metal Casting	 Design of pattern Molds and cores Solidification and cooling Riser and gating design Design considerations
Forming	 Platic deformation and yield criteria Fundamentals of hot and cold working processes Load estimation for bulk and sheet metal forming processes Principles of powder metallurgy
Joining	 Physics of welding Brazing and soldering Adhesive bonding Design consideration in welding
Machining and Machine Tool Operations	 Mechanics of machining Single and multi-point cutting tools Tool geometry and materials Tool life and wear Economics of machining Principles of non-traditional machining processes Principles of work holding Principles of design of jigs and

	fixtures
Metrology and Inspection	 Limits, fits, and tolerances Linear and angular measurements Comparators Gauge design Interferometry Form and finish measurement Alignment and testing methods Tolerance analysis in manufacturing and assembly
Computer Integrated Manufacturing	 Basic concepts of CAD/CAM and their integration tools
Production Planning and Control	 Forecasting models Aggregate production planning Scheduling Materials requirement planning
Inventory Control	 Deterministic and probabilistic models Safety stock inventory control systems
Operations Research	 Linear programming Simple & duplex method Transportation Assignment Network flow models Simple queuing models PERT and CPM