AP PGECET 2025 Electrical Engineering Syllabus

Engineering Mathematics Syllabus

Linear Algebra	Matrix algebraSystems of linear equationsEigenvalues and eigenvectors
Calculus	 Mean value theorems Evaluation of definite and improper integrals Theorems of integral calculus
Differential Equations	 First-order equations (linear and non-linear) Higher-order linear differential equations with constant coefficients Methods of variations parameters Cauchy's & Euler's equations Initial and boundary value problems Partial differential equations and variable separable method
Complex Variables	 Analytic functions Cauchy's integral theorem and integral formula Taylor & Laurent series Residue theorem Solution integrals
Probability & Statistics	 Probability and sampling theorems Conditional probability Probability of the density function Mean/median/mode/standard deviation Random variables Discrete and continuous distributions Exponential/ poisson/ normal/ binomial distributions Correlation and regression analysis

	Numerical Methods	 Solutions of non-linear algebraic equations Single & multi-step methods for differential equations
--	-------------------	---

Electrical Engineering Syllabus

College	 Network graph KCL/ KVL/ Node/ and mesh analysis Transient response of DC and AC networks Sinusoidal steady-state analysis Resonance Basic filter concepts Ideal current and voltage sources Thevenin's/ Norton's and superposition and maximum power transfer theorems Two port networks Three phase circuits Gauss theorem Electric field and potential due to point Line, plane, and spherical charge distributions Ampere's and Bio-Savart's law Inductance Dielectrics
Signals & Systems	 Capacitance Representation of continuous and discrete time signals Shifting and scaling operations Linear, time-invariant, casual systems Fourier series representation of continuous periodic signals Sampling theorem Fourier/ laplace/ z transforms
Electrical Machines	 Single phase transformer - equivalent circuit Phasor diagram/ test/ regulation/ efficiency

- Three-phase transformers connections/ parallel operation
- Autotransformer
- Energy conversion principles
- DC Machines Types/ windings/ general characteristics/ armature reaction and commutation/ Starting and speed control of motors
- Three-phase induction motors principles/ types/ performance characteristics/ starting and speed control
- Single-phase induction motors
- Synchronous machines performance/ regulation and
 parallel operation of generators/
 motor starting/ characteristics and
 applications
- Servo and stepper motors

Power Systems

College

- Basic power generation concepts
- Transmission line models and performance
- Cable performance
- Insulation
- Corona and radio interference
- Distribution systems
- Per-unit quantities
- Bus impedance and admittance matrices
- Load flow
- Voltage control
- Power factor correction
- Economic operation
- Symmetrical components
- Fault analysis
- Principles of over-current
- Differential and distance protection
- Solid state relays and digital protection
- Circuit breakers
- System stability concepts
- Swing curves and equal area criterion
- HVDC transmission and FACTS concepts

Control Systems	 Principles of feedback Transfer function Block diagrams Steady-state errors Routh and Niquist techniques Bode plots Root loci Lag/ lead/ lead-lag compensation State space model State transition matrix Controllability & observability
Electrical and Electronic Measurement	 Bridges and potentiometers PMMC/ moving iron/ dynamometer/induction-type instruments Measurement of voltage/ current/ power/ energy/ and power factor Instrument transformers Digital voltmeters and multimeters Phase/ time/ frequency measurements Q-meters Oscilloscopes Potentiometric recorders Error of analysis
Analog and Digital Electronics	 Characteristic of diodes BJT/FET/ amplifiers - biasing/ equivalent circuit/ frequency response Oscillators and feedback amplifiers Operational amplifiers (characteristics and applications) Simple active filters VCOs and timers Combinational and sequential logic circuits Multiplexer Schmitt trigger Multi- vibrators Sample and hold circuits A/D and D/A converters 8-bit microprocessors basics Architecture, programming, and interfacing

Power Electronics and Drives	 Semiconductor power diodes Transistors Thyristors Triacs GTO's MOSFETs and IBGTs - static characteristics and principles of operations Triggering circuits Phase control rectifiers Bridge converters - fully controlled and half controlled Principles of choppers and inverters Basic concepts of adjustable speed DC and AC drives
Electric Traction Systems	 Speed time curves Specific energy consumption Mechanism of train movement

CollegeDekho