AP PGECET 2025 Biotechnology Syllabus

Engineering Mathematics Syllabus

Linear Algebra	Matrices & determinantsSystems of linear equationsEigenvalues and eigenvectors
Calculus	 Limit, continuity, and differentiability Partial derivatives Maxima & minima Sequence and series Test for convergence Fourier series
Differential Equations	 Linear and non-linear first-order ODEs Higher-order ODEs with constant coefficients Cauchy's & Euler's equations Laplace transforms PDE - laplace Heat and wave equations
Probability & Statistics	 Probability and sampling theorems Conditional probability Mean/median/mode/standard deviation Random variables Poisson/ normal/ binomial distributions Correlation and regression analysis
Numerical Methods	 Solutions of non-linear algebraic equations Single & multi-step methods for differential equations Integration of trapezoidal and Simpson's rule

Microbiology	 Prokaryotic and eukaryotic cell structure Microbial nutrition Growth and control Microbial metabolism (aerobic and anaerobic respiration, photosynthesis) Nitrogen fixation Chemical basis of mutations and mutagens Microbial genetics (plasmids, transformation, conjugation, transduction) Microbial diversity and characteristics features
Biochemistry	 Viruses Biomolecules and their conformation Weak inter-molecular interactions in biomacromolecules Chemical and functional nature of enzymes Kinetics of single substrate and bi-substrate enzyme-catalyzed reactions Bioenergetics Metabolism (glycolysis, TCA & oxidative phosphorylation) Membrane transport and pumps Cell cycle and cell growth control Cell signaling and signal transduction
Molecular Biology and Genetics	 Molecular structure of genes and chromosomes DNA replication and control Transcription and its control Translational processes Regulatory controls in prokaryotes and eukaryotes Mendelian inheritance Gene interaction Complementation Linkage/ recombination/ chromosome mapping

	 External chromosomal inheritance Chromosomal variation Population genetics Transposable elements Molecular basis of genetic diseases and applications
Collegi	 Bioprocess technology for the production of cell biomass and primary/ secondary metabolites (like baker's yeast, ethanol, citric acid, amino acids, antibiotics, pigments, exopolysaccharides) Microbial production purification and bioprocesses applications of industrial enzymes Production and purification of recombinant proteins on a large scale Chromatographic and membrane-based bioseparation methods Immobilization of enzymes and cells and their applications of bioconversion processes Aerobic and anaerobic biological processes for stabilization of solid/liquid wastes Bioremediation
Bioprocess Engineering	 Kinetic of microbial growth Substrate utilization and product formation Simple structured models Sterilization of air and media Batch, fed-batch and continuous processes Aeration and agitation Mass transfer in bioreactors Rheology of fermentation fluids Scale-up concepts Design of fermentation media Various types of microbial and enzyme reactors Instrumentation in bioreactors

Plant and Animal Biotechnology	 Special features and organization of plant cells Totipotency Regeneration of plants
	 Plant products of industrial importance Biochemistry of major metabolic path ways and products Autotrophic and heterotrophic growth Plant growth regulators and elicitors Cell suspension culture development: methodology, kinetics of growth and product formation, nutrient optimization Production of secondary metabolites by plant suspension cultures Hairy root cultures and their cultivation Techniques in raising transgencies
Charcaterisitcs of Animals Cells	 Metabolism/ regulation/ nutritional requirements for mass cultivation of animal cell cultures Kinetics of cell growth and product formation and effect of shear force Product and substrate transport Micro and macro carrier culture Animal cell preservation
Immunology	 The origin of immunology Inherent immunity Humoral and cell mediated immunity Primary and secondary lymphoid organ Antigen B and T cells and macrophages Major histocompatibility complex Antigen processing and presentation Synthesis of antibody and secretion Molecular basis of antibody

	diversity Polyclonal and monoclonal antibody Complement Antigen antibody reaction Regulation of immune response Immune tolerance Hyper sensitivity Autoimmunity Graft versus host reaction
Recombinant DNA Technology College	 Restriction and modification enzymes Vectors: Plasmid/ bacteriophage/ other viral vectors/ cosmids/ Ti plasmid/ yeast artificial chromosome cDNA and genomic DNA library Gene Isolation Gene cloning Expression of cloned gene Transposons and gene targeting DNA labeling DNA sequencing Polymerease chain reactions DNA fingerprinting Southern and northern blotting In-situ hybridization RAPD RFLP Site-directed mutagenesis Gene transfer technologies Gene therapy
Bioinformatics	 Major bioinformatics resources (NCBI, EBI, ExPASy) Sequence and structure databases Sequence analysis (biomolecular sequence file formats, scoring matrices, sequence alignment, phylogeny) Genomics and proteomics (large genome sequencing strategies, comparative genomics, understanding DNA micro arrays and protein arrays)

•	Molecular and simulations (basic
	concepts including concept of force
	field)

