1

KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD II PUC EXAM – 1, MARCH 2025 SUBJECT: 33 - PHYSICS SCHEME OF EVALUATION MAX. MARKS: 70

0 N				
Q. No.	KEY AN	<u>NSWER</u>		Marks
I D' 1		$\mathbf{I} - \mathbf{A}$. 1 1 5
1. Pick 1	A point charge q_1 exerts a force F on another point (a) increases (b) (c) movimer and primer	o for ALL pint charge e force of decreas	ge q_2 when placed at a fixed distance. If q_2 due to q_1 : es	1
	(c) may increase or increase (d) does no	ot change	
	ANS: (d) does not change			
2	Equipotential surfaces for an isolated point chan	rge are _	in shape.	
	(a) spherical (b) planar (c)) cylindri	cal (d) conical	1
				1
-	ANS: (a) spherical			
3	Resistivity of a metal wire depends on its:			
	(a) area of cross-section (b)) length		1
	(c) material (d)) volume		1
	ANS: (c) material			
4	The following table lists magnetic fields due t	to differe	nt current configurations. Column I	
	lists the current configurations and column II li	ists expre	essions for magnetic fields. Symbols	
	have usual meanings.			
	Column – I		Column – II	
	(i) At a distance <i>r</i> from an infinitely long straig	ht wire.	(p) $B = \mu_o n l$	
	(ii) At the centre of a circular current loop of r	adius <i>r</i> .	(q) $B = \frac{\mu_0 l}{2r}$	
	(iii) At the centre of a current carrying solenoi	d.	(r) $B = \frac{\mu_o l}{2\pi r}$	1
	Match the current configurations in Column - I	with the	correct magnetic - field expressions	
	in Column - II.			
	(a) (i) – (p), (ii) – (q), (iii) – (r) (b)) (i) – (r)	(ii) - (q), (iii) - (p)	
	(c) (i) – (r), (ii) – (p), (iii) – (q) (d)	(i) - (q)	(ii) - (r), (iii) - (p)	
_	$\frac{ANS: (b) (i) - (r), (ii) - (q), (iii) - (p)}{(T)}$	•	· 11 1	
Э	(a) Gauss' law in electrostation	ace is zer	0. I his law is called	
	(a) Gauss law in electrostatics (b)) Gauss) Faradas	raw in magnetism	1
	(c) Ampere's circultar law (d)	<i>)</i> 1 araday	s law of electromagnetic induction	1
	ANS: (b) Gauss' law in magnetism			
6	Consider the following statements:			
	Statement 1: AC generator worked on the princ	iple of el	ectromagnetic induction.	
	Statement 2: In an AC generator, as the armatu	ire is rota	ated in a uniform magnetic field, the	
	magnetic flux linked with the coil changes which	h induces	s an emf in the coil. Among the above	
	two statements:			1
	(a) Both statements are true (b)) Both sta	atements are false.	
	(c) Statement 1 is true and statement 2 is false(d) Statement 2 is false and statement 2 is true			
	ANS: (a) Both statements are true			
	in with both statements are true			I

	2	
7	The variation of voltage and current through an a.c. circuit with time is as shown in the figure. vori vori voltage (w) voltage (w) current (i) at → Along with the a.c. source, the circuit: (a) has a series combination of resistance and capacitance (b) has only inductance (c) has only capacitance (d) may have only resistance or may have a suitable series combination of inductance (L), capacitance (C) and resistance or may have a suitable series combination of inductance (P)	1
0	Transformer constance (C) and resistance (K)	
8	Iransformer cores are usually laminated. This is to reduce energy loss due to: (a) flux leakage (b) winding resistance (c) eddy currents (d) hysteresis ANS: (c) eddy currents (d) hysteresis	1
9	'Ampere-Maxwell Law' is written as (symbols have usual meanings):	
	(a) $\oint \vec{B} \cdot d\vec{l} = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\phi_E}{dt}$ (b) $\oint \vec{B} \cdot d\vec{l} = \mu_0 I + \varepsilon_0 \frac{d\phi_E}{dt}$	
	$(1) \vec{A} \vec{B} \vec{A} \vec{I} = \vec{L} $	1
	(c) $\varphi B \cdot at = \mu_0 t$ (d) $\varphi E \cdot at = -\frac{dt}{dt}$	1
	ANS: (a) $\oint \vec{B} \cdot d\vec{l} = \mu_o I + \mu_o \varepsilon_o \frac{d\phi_E}{dt}$	
10	Final image of a real object formed by a compound microscope is with respect to	
	the object.(a) real, inverted and magnified(c) virtual, erect and diminished(b) virtual, erect and magnified(c) virtual, erect and diminished(c) virtual, erect and magnified	1
	ANS: (d) virtual, inverted and magnified	
	 Which one of the following statements is WRONG about interference of light? (a) Light waves of same wavelength coming from two independent sources can be coherent and can produce interference. (b) When the path difference between two interfering waves in nλ, bright fringe is produced (here n = 0, 1, 2, and λ is the wavelength of light) (c) When the phase difference between two interfering waves is (2n + 1)π, dark fringe is produced (here n = 0, 1, 2,) (d) In Young's double slit experiment, dark and bright fringes are equally spaced. 	
	ANS: (a) Light waves of same wavelength coming from two independent sources can be	
10	coherent and can produce interference.	
12	A ball is dropped from a certain neight and it fails freely under gravity. During the fall, the de Broglie wavelength associated with it: (a) keeps increasing (c) is zero (d) may increase or decrease	1
	(c) is zero (d) may mercase of decrease	
	ANS: (b) keeps decreasing	
13	In Rutherford's α – ray scattering experiment, α – particles of specific energy are projected towards a thin gold foil. If the impact parameter for the a-particles is zero, the angle of scattering is:	
	$\begin{array}{c} (a) \ \sigma - 0^{-} \\ (b) \ \theta = 90^{-} \\ (c) \ \theta = 180^{\circ} \\ (d) \ \theta = 45^{\circ} \end{array}$	
	(u) v = 100 $(u) v = 43$	
	ANS: (c) $\theta = 180^{\circ}$	

	3	
14	Binding energy per nucleon of a nucleus is a measure of its:	
	(a) radius (b) mass	1
	(c) volume (d) stability	1
	ANS: (d) stability	
15	The energy gap for silicon is:	
	(a) 0.72 eV (b) 1.1 eV	
	(c) 3 eV (d) 5 eV	1
	ANS(b) 1 1 eV	
II Fil	AND: (D) 1.1 eV	estions
11. 1 11.	(diamagnetic ferromagnetic instantaneous transverse force toraue)	.5010115.
16	An electric dipole placed in a uniform electric field experiences a net TOROUE .	1
17	Water is an example for DIAMAGNETIC material	1
1/	When a EEDBOMACNETIC and is inserted into a soil its solf, industance insurances	1
18	when a <u>FERROMAGNETIC</u> rod is inserted into a con, its sen- inductance increases	1
19	Polarization of light shows that light is a IRANSVERSE wave.	1
20	Photoelectric effect is a/ an INSTANTANEOUS effect	1
	$\underline{PART} - \underline{B}$	
III. Aı	nswer any <u>FIVE</u> of the following questions: $5 \times$	2 = 10
21	Define electric potential energy of a system of charges. What happens to the potential	
	(assume there is no external electric field)?	
	Electric potential energy of a system of charges is the amount of work done to assemble the	1
	system of charges bringing each charge from infinity to their respective positions.	-
	The potential energy increases.	1
22	List any two limitations of Ohm's law.	
	(1) V ceases to be proportional to I .	1
	(2) Semiconductor diodes do not obey Ohm's law.	+
	(4) Ohm's law is not applicable at very high and very low temperatures.	
	(Any two) (Any other correct limitation should be considered)	
23	Write the expression for Lorentz force and explain the terms.	
		1
	$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$	1
	where q is the charge; \vec{E} is the electric field; \vec{B} is the magnetic field and \vec{v} is the velocity of	1
	the charge.	1
24	State Lenz's law. What is its significance?	
		1
	I he polarity of induced emf is such that it tends to produce a current which opposes the change	1
	In magnetic flux that produced it.	1
25	Give any two uses of microwaves.	1
	(1) They are used in radar systems used in aircraft navigation.	1
	(2) They are used in speed guns.	+
	(3) They are used in microwave ovens.	1
26	(Any two) (Any other relevant use should be considered)	
26	How are local length (J) and radius of curvature (K) of a spherical mirror related? What is the sign of focal length of a convex mirror?	
	is the sign of focal length of a convex militor:	
	<i>R</i>	1
	$f = \frac{1}{2}$	_
	The focal length of a convex mirror is <i>positive</i> .	1

4		
27	Mention the condition for total internal reflection.	
	(a) The light ray should be travelling from a denser medium to a rarer medium.	l
	(b) The angle on incidence should be greater than the critical angle for the pair of media.	1
28	An intrinsic semiconductor crystal is doped with pentavalent atoms has an electron	
	concentration of 5 \times 10 ²² m ⁻³ . If, at thermal equilibrium, the intrinsic concentration n_i	
	= 1.5×10^{16} m ⁻³ , find the hole concentration.	
	Given: $n_a = 5 \times 10^{22} \text{ m}^{-3}$ and $n_i = 1.5 \times 10^{16} \text{ m}^{-3}$	
	$n_c n_b = n^2$	1
	n_{ℓ}^{2} (15 x 10 ¹⁶) ²	
	$\Rightarrow n_h = \frac{n_i}{m} = \frac{(1.5 \times 10^{-7})}{(5 \times 10^{22})} = 0.45 \times 10^{10} \text{ m}^{-3}$	1
	$n_e = 5 \times 10^{22}$	
	OR $n_h = 4.5 \times 10^9 \mathrm{m}^{-3}$	
	$\underline{PART - C}$	
IV. A1	nswer any <u>FIVE</u> of the following questions: 5×5	3 = 15
29	Mention three properties of electric field lines.	
	(1) Field lines start from positive charges and end at negative charges.	
	(2) In a charge-free region, electric field lines can be taken to be continuous curves without	1
	any breaks.	+
	(3) Two field lines can never cross each other.	1
	(4) Electrostatic field lines do not form any closed loops.	+
	(4) A tangent drawn to an electric field line at any point gives the direction of electric field at	1
	that point.	
	(5) Density of field lines is a measure of the strength of electric field.	
	(Any three)	
30	Derive the expression for the equivalent capacitance of two capacitors connected in	
	parallel.	
	Consider two capacitors C_1 and C_2 connected in parallel across a voltage V. Let C_p be the	
	equivalent capacitance of the combination.	
	C_1	
	$+O_1^{\ddagger}$ $= O_1$	
	$+$ $ C_p$	
	$+ Q_{+}^{+} = -Q$	1
	$ \downarrow C_2 \rightarrow \downarrow \downarrow$	
	$+Q_2$; $ z- Q_2$ $ z $	
	‡ =	
	$ \longrightarrow V \longrightarrow $	
	For the first capacitor: $Q_1 = C_1 V_1$ and for the second capacitor $Q_2 = C_2 V_2$.	1
	For the equivalent capacitor, $Q = C_p V$.	
	As the capacitors are in parallel, $0 = 0_1 + 0_2$	
	$\Rightarrow C_n V = C_1 V_1 + C_2 V_2$	
	$\Rightarrow f_{1} = f_{2} + f_{2}$	1
		-
L		

	5			
31	Explain with a circuit diagram, how a galvanometer can be converted into voltmeter.			
	A galvanometer can be converted into a voltmeter by connecting a suitable high resistance in series with it.	1		
	$\overbrace{G}{R_{G}}$	1		
	Voltmeter The value of high resistance is:			
	$R = \frac{V}{I_g} - R_G$	1		
	Where, V is the voltage to be measured, R_G is the resistance of the galvanometer and I_g is the maximum galvanometer current.	OR		
	OR			
	As a voltmeter is connected in parallel with that section of the circuit it must draw a very small current.	1		
	R_{G} R	1		
	Voltmeter Therefore, to convert a galvanometer into a voltmeter, a large resistance R is connected in series with it			
32	Define the terms: a) Magnetization b) Magnetic permeability and c) Magnetic susceptibility.			
	 (a) The net magnetic moment per unit volume is called magnetization. (b) Magnetic permeability is the ratio between magnetic field and magnetic intensity. (c) Magnetic susceptibility is the ratio between magnetization and magnetic intensity. 			
33	Derive the expression for motional emf induced in a rod moving in a uniform magnetic field.			
	Consider a rod PQ of length l moving perpendicular to a uniform magnetic field B with a speed v as shown in the figure.			
	$s \times s \times I \times s \times I \times s \times s \times s \times s \times s \times $			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		1		
	$ \times \times \times \times \times \times \times \times $			
	X X X X X Q			
	\mathbf{R}			
	Magnetic flux for the surface PQRS, $\phi_B = B A \cos \theta = B l x$ Induced emf in the rod:			
	$\varepsilon = -\frac{d\phi_B}{d\phi_B}$	1		
	dt d(Blx)			
	$\varepsilon = -\frac{dt}{dt} = Btv$	1		

	6		
34	When a light radiation of energy 3 eV falls on a metal surface, photoelectrons with a maximum kinetic energy 1 eV are emitted from the surface. Find the threshold frequency for the metal surface		
	(Given: Planck's constant, $h = 6.63 \times 10^{-34}$ J s; Charge on the electron $e = 1.6 \times 10^{-19}$ C).		
	Given: $hv = 3 \text{ eV}$ and $K_{\text{max}} = 1 \text{ eV}$.		
	$\phi_o = hv - K_{\text{max}} = 3 \text{ eV} - 1 \text{ eV} = 2 \text{ eV}$	1	
	$v_o = \frac{\varphi_o}{h}$	1	
	$=\frac{2 \times 1.6 \times 10^{-13}}{6.63 \times 10^{-34}} = 4.83 \times 10^{14} \text{ Hz}$	1	
		_	
35	State the postulates of Bohr's hydrogen atom model.		
	(1) An electron in an atom could revolve in certain stable orbits without the emission of radiant energy. These are called the stationary states of the atom.	1	
	(2) The electron revolves around the nucleus only in those orbits for which the angular momentum is some integral multiple of $h/2\pi$ where h is the Planck's constant.		
	OR The angular momentum of the electron in an orbit is quantized in terms of $h/2\pi$ where h is the Planck's constant	1	
	(3) An electron might make a transition from one of its orbits to another of lower energy.When it does so, a photon is emitted having energy equal to the energy difference between the initial and final states.		
	OR	1	
	When an electron makes a transition from a higher energy E_2 to a lower energy E_1 , a photon is emitted whose frequency is given by:		
	$\nu = \frac{E_2 - E_1}{h}$		
36	Write any three properties of nuclear force.		
	(1) It is a very strong force.	1	
	(2) It is a short-range force.	+	
	(3) It is charge independent.	1	
	(4) It shows saturation property.	+	
	(5) The force is attractive for distances larger than 0.8 fm and repulsive if they are separated	1	
	by distances less than 0.8 fm.	1	
	(Any three) (Any other correct answer should be considered)		
	PART – D		
V. An	swer any THREE of the following questions: 3×3	5 = 15	
37	Derive the expression for the electric potential at a point due to a point charge.		
	Let us calculate the potential due to this charge at a point P at a distance r from Q . Suppose a		
	unit positive charge is brought radially from infinity to P.		
	Consider an intermediate point A at a distance x from the charge. Let the unit positive charge		
	be displaced by a small displacement dx .		
	A @		
	x +1C	1	
	P		
	o⊕ s		
	Ğ		

	The force at this point is given by:	
	$F = \frac{1}{4-\epsilon} \frac{Q \times 1}{r^2}$	
	The work done to move the unit positive charge through a distance dx is:	I
	$dW = F dx \cos \theta = -\frac{1}{\sqrt{2}} \frac{Q}{2} dx$	
	Therefore, the total work done which is equal to the potential at the point is given by:	1
	$W = \int dW = \int -\frac{1}{4\pi\varepsilon_0} \frac{Q}{x^2} dx = -\frac{Q}{4\pi\varepsilon_0} \int \frac{1}{x^2} dx$	1
	$\Rightarrow W = \frac{Q}{1 + 1} \left[\frac{1}{2} - \frac{1}{2}\right] = \frac{1}{1 + 1} \frac{Q}{Q}^{\infty}$	
	$\frac{4\pi\varepsilon_0 [r \infty]}{\text{This is the work done to move the unit positive charge from infinity to point P By definition}$	
	it is equal to the electric potential at P.	1
	W = V	
	$\therefore V = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$	
38	Arrive at the condition for balance of a Wheatstone's network using Kirchhoff's rules.	
	The following circuit show a Wheatstone's network	
	B	
	$I_1 - I_g$	
	$R_1 \longrightarrow I_g \longrightarrow R_3$	
	A G G G C	1
	R_2 P_2	
	D	
	ε Applying KVL to loop ABDA	
	$-I_1 R_1 - I_g G + I_2 R_2 = 0$	
	Applying KVL to loop BCDB,	
	$-(I_1 - I_g)R_3 + (I_2 + I_g)R_4 + I_gG = 0$	I
	When the network is balanced, the current through the galvanometer is zero (or $I_g = 0$).	
	$-I_1R_1 + I_2R_2 = 0 \Longrightarrow I_1R_1 = I_2R_2$	
	$-I_1R_3 + I_2R_4 = 0 \Longrightarrow I_1R_3 = I_2R_4$	
	Dividing one question by another, we get:	
	$\frac{R_1}{R_1} = \frac{R_2}{R_2} \qquad \left(OR \ \frac{R_1}{R_1} = \frac{R_3}{R_3}\right)$	1
	$R_3 R_4 (\begin{array}{c} & R_2 \\ & R_4 \end{array})$	

	OR	OR
	Given: $\sigma = 16 \mu\text{C}\text{cm}^{-2} = 16 \times 10^{-2} \text{C}\text{m}^{-2}$, $R = 10 \text{cm} = 0.1 \text{m}$ Charge on the spherical shell, $Q = \sigma \times 4\pi R^2$	
	$= (16 \times 10^{-2}) \times (4 \times 3.14 \times (0.1)^2) = 2 \times 10^{-2} C$ (a) The electric field at a distance of 20 cm is:	
	$E = \frac{1}{4\pi\varepsilon_o} \frac{Q}{r^2}$	1
	$\Rightarrow E = (9 \times 10^9) \times \frac{2 \times 10}{0.2^2}$ $= 4.5 \times 10^9 \text{ N } \text{C}^{-1}$	1 1
	Alternate Method: Electric field: $E = \frac{\sigma}{\varepsilon_o} \frac{R^2}{r^2} = \frac{16 \times 10^{-2}}{8.854 \times 10^{-12}} \left(\frac{10}{20}\right)^2 = 0.452 \times 10^{10} \text{ NC}^{-1}$	
	(b) A point 5cm from the centre lies within the spherical conductor. Hence electric field is zero.	1
43	 Two identical cells each of emf 15 V either connected in series or connected in parallel across an external resistance of 5 Ω produce the same current through the resistor. a) Calculate the value of internal resistance of the cell. b) Find the current through the external resistor in either case. 	
	Given: $\varepsilon_1 = \varepsilon_2 = 15 V$; $R = 5 \Omega$; $r_1 = r_2 = r$; $I_s = I_n$	
	(a) $\varepsilon_s = \varepsilon_1 + \varepsilon_2 = 30 V; \varepsilon_P = \frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 + r_2} = 15 V$	1
	$r_s = r_1 + r_2 = 2r; r_p = \frac{r_1 r_2}{r_1 + r_2} = \frac{r}{2}$	1
	$I = \frac{\varepsilon}{R+r}$	1
	$I_s = I_p \Longrightarrow \frac{30}{5+2r} = \frac{13}{5+r/2}$	
	$\Rightarrow r = 5 \Omega$	1
	(b) $I = I_s = \frac{38}{5+2r} = \frac{38}{5+2\times5} = 2A$ (Any other alternative method should be considered)	1
44	A series <i>LCR</i> circuit with $L = 0.5$ H and $R = 100 \Omega$ is connected to a 200 V, 50 Hz a.c.	
	supply.a) Calculate the value of capacitance of the capacitor that drives the circuit into resonance.b) Find the value of voltage across the inductor at resonance.	
	Given: $L = 0.5$ H; $R = 100 \Omega$; $V = 200$ V; $f = f_0 = 50$ Hz	1
	(a) $f_o = \frac{1}{2\pi\sqrt{LC}}$	1
	$\implies C = \frac{1}{4\pi^2 f_o^2 L} = \frac{1}{4 \times (3.14)^2 \times (50)^2 \times 0.5} = 20.2 \times 10^{-6} \text{ F}$	1
	(b) Current through the circuit, $I = \frac{V}{R} = \frac{200}{100} = 2$ A	1
	Inductive reactance, $X_L = 2\pi fL = 2 \times 3.14 \times 50 \times 0.5 = 157 \Omega$	1
	Voltage across inductor, $V_L = IX_L = 2 \times 157 = 314$ V (Any other alternative method should be considered)	1

10

	11	
45	An object of height 1 mm is kept perpendicular to the axis of a thin convex lens of power + 10 D. The distance between the object and the lens is 15 cm. Find the position and height of the image formed.	
	Given: $P = +10$ D; $u = -15$ cm; $h_i = 1$ mm	
	Focal length of the lens, $f = \frac{1}{p} = \frac{1}{10} = 0.1 \text{ m} = 10 \text{ cm}$	1
	Thin lens formula: $-\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$	1
	$\Rightarrow v = \frac{uf}{u+f} = \frac{(-15) \times (10)}{(-15) + (10)} = 30 \text{ cm}$	1
	Height of the image, $h_i = m \times h_o = \frac{v}{u} \times h_o$	1
	$h_i = \frac{v}{u} \times h_o = \frac{30}{-15} \times 1 = -2 \text{ mm}$	1
	OR Height of the image is 2 mm.	
	(Any other alternative method should be considered)	
	<u>PART – E</u>	
7	When a.c. is passed through an a.c. circuit, it is observed that the voltage and the current are	
	in phase. Along with the a.c. source, the circuit:	
	(a) has a series combination of resistance and capacitance.	
	(b) has only inductance. (c) has only capacitance.	1
	(d) may have only resistance or may have a suitable series combination of inductance (L) and expected as (R)	
	(L), capacitance (C) and resistance (K).	
	Ans: (d) may have only resistance or may have a suitable series combination of inductance (L) , capacitance (C) and resistance (R) .	