Sample KCET Chemistry Question Paper and Answer Key PDF

1. Question: (Chemical Bonding)

- Which of the following molecules has the highest dipole moment?
 - (A) CO₂
 - (B) CH₄
 - (C) NH₃
 - (D) BF₃
- Answer: (C) NH₃
- Solution:
 - \circ CO₂ and BF₃ are symmetrical and have zero net dipole moments.
 - CH₄ is tetrahedral and also has a zero net dipole moment due to its symmetry.

0

 NH₃ has a pyramidal structure with a lone pair of electrons, resulting in a net dipole moment.

0

- 2. Question: (Organic Chemistry)
 - Which of the following reagents can be used to distinguish between aldehydes and ketones?
 - (A) Tollens' reagent
 - (B) Fehling's solution
 - (C) Schiff's reagent
 - (D) All of the above
 - Answer: (D) All of the above
 - Solution:
 - Tollens', Fehling's, and Schiff's reagents all react with aldehydes, but not with ketones, thus they can all distinguish between these two functional groups.
- 3. Question: (Chemical Equilibrium)
 - For the reaction N₂(g) + 3H₂(g) = 2NH₃(g), the equilibrium constant Kp is related to Kc by the equation:
 - (A) Kp = $Kc(RT)^2$
 - (B) Kp = Kc(RT)⁻²
 - (C) Kp = Kc(RT)⁴
 - (D) Kp = Kc(RT)⁻⁴

- Answer: (B) Kp = Kc(RT)⁻²
- Solution:
 - Kp = Kc(RT) Δ n, where Δ n = (moles of gaseous products) (moles of gaseous reactants).
 - In this reaction, $\Delta n = 2 (1 + 3) = -2$.
 - Therefore $Kp = Kc(RT)^{-2}$.
- 4. Question: (Solid State)
 - In a face-centred cubic (FCC) unit cell, the number of atoms per unit cell is:
 - (A) 1
 - **(B) 2**
 - o (C) 4
 - (D) 6
 - Answer: (C) 4
 - Solution:
 - In an FCC unit cell, there are atoms at each of the eight corners and the center of each of the six faces.
 - Number of atoms = (8 corners × 1/8) + (6 faces × 1/2) = 1 + 3 = 4
- 5. Question: (Solutions)
 - Which of the following is a colligative property?
 - (A) Boiling point
 - (B) Freezing point
 - (C) Osmotic pressure
 - (D) all of the above.
 - Answer: (D) all of the above.
 - Solution:
 - boiling point elevation, freezing point depression, and osmotic pressure are all colligative properties.
- 6. Question (Periodic table)
 - Which of the following elements has the highest ionization energy?
 - (A) Li
 - (B) Na
 - (C) K
 - (D) He.
 - Answer: (D) He.

- Solution:
 - Helium is a noble gas with a full outer electron shell, making it extremely difficult to remove an electron.

Therefore it has the highest ionization energy.

7. Question: (Coordination Compounds)

- Which of the following complexes is an inner orbital complex?
 - (A) [Co(NH₃)₀]³⁺
 - (B) [CoF₆]³⁻
 - (C) [Fe(H₂O)₆]³⁺
 - (D) [Ni(Cl)₄]²⁻
- Answer: (A) [Co(NH₃)₅]³⁺
- Solution:
 - [Co(NH₃)₆]³⁺ has a strong field ligand (NH₃) causing pairing of electrons and uses inner d-orbitals (d²sp³) for hybridization, making it an inner orbital complex.
- 8. Question: (Electrochemistry)
 - The standard electrode potential of Zn²⁺/Zn is -0.76 V and that of Cu²⁺/Cu is +0.34 V. The standard cell potential of the cell Zn | Zn²⁺ || Cu²⁺ | Cu is:
 - (A) +1.10 V
 - (B) -1.10 V
 - (C) +0.42 V
 - (D) -0.42 V
 - Answer: (A) +1.10 V
 - Solution:
 - E°cell = E°cathode E°anode
 - E° cell = $E^{\circ}(Cu^{2+}/Cu) E^{\circ}(Zn^{2+}/Zn)$
 - E°cell = 0.34 V (-0.76 V) = 1.10 V
- 9. Question: (Chemical Kinetics)
 - For a first-order reaction, the rate constant is 6.93 × 10⁻³ s⁻¹. The time taken for 50% completion of the reaction is:
 - (A) 100 s
 - (B) 1000 s
 - (C) 10 s
 - (D) 10000 s
 - Answer: (A) 100 s

- Solution:
 - For a first-order reaction, $t_1/_2 = 0.693/k$
 - \circ t₁/₂ = 0.693 / (6.93 × 10⁻³ s⁻¹) = 100 s

10. Question: (p-Block Elements)

- Which of the following oxides is amphoteric?
 - (A) CO₂
 - (B) SiO₂
 - (C) SnO₂
 - (D) CaO
- Answer: (C) SnO₂
- Solution:
 - SnO₂ (tin dioxide) is amphoteric, meaning it can react with both acids and bases.
- 11. Question: (Biomolecules)
 - Which of the following is a reducing sugar?
 - (A) Sucrose
 - (B) Glucose
 - (C) Starch
 - (D) Cellulose
 - Answer: (B) Glucose
 - Solution:
 - Glucose is a reducing sugar because it has a free aldehyde or ketone group that can reduce other substances.
- 12. Question: (General Organic Chemistry)
 - The IUPAC name of CH₃CH(CI)CH₂CHO is:
 - (A) 3-chlorobutanal
 - (B) 2-chlorobutanal
 - (C) 1-chlorobutanal
 - (D) 4-chlorobutanal
 - Answer: (A) 3-chlorobutanol
 - Solution:
 - The longest chain contains 4 carbons (butane), and the aldehyde group (-CHO) is at carbon 1. Chlorine is at carbon 3. Thus, 3-chlorobutanal.
- 13. Question: (Metallurgy)

- Which of the following is used as a depressant in the froth floatation process for the separation of zinc sulphide and lead sulphide?
 - (A) Sodium ethyl xanthate
 - (B) Pine oil
 - (C) Sodium cyanide
 - (D) Cresols
- Answer: (C) Sodium cyanide
- Solution:
 - Sodium cyanide (NaCN) is used as a depressant to selectively prevent ZnS from coming into the froth, allowing PbS to be separated.
- 14. Question: (d- and f-Block Elements)
 - Which of the following ions is coloured in an aqueous solution?
 - (A) Zn²⁺
 - (B) Ti^₄
 - (C) Cu²⁺
 - (D) Sc³⁺
 - Answer: (C) Cu²⁺
 - Solution:
 - Cu²⁺ has an incomplete d-orbital configuration (d⁹), allowing for d-d transitions, which result in colour. The others have either filled or empty d-orbitals.

15. Question: (Polymers)

- Which of the following is a condensation polymer?
 - (A) Polyethylene
 - (B) PVC (Polyvinyl chloride)
 - (C) Nylon 6,6
 - (D) Teflon
- Answer: (C) Nylon 6,6
- Solution:
 - Nylon 6,6 is formed by the condensation reaction between adipic acid and hexamethylenediamine, with the elimination of water molecules.
- 16. Question: (Surface Chemistry)
 - The phenomenon of adsorption finds application in:
 - (A) Production of high vacuum
 - (B) Heterogeneous catalysis

- (C) Removal of colouring matter from solutions
- (D) All of the above
- Answer: (D) All of the above
- Solution:
 - Adsorption is used in all the mentioned applications.
- 17. Question: (Environmental Chemistry)
 - Which of the following is a primary pollutant in the atmosphere?
 - (A) PAN (Peroxyacetyl nitrate)
 - (B) Smog
 - (C) CO (Carbon monoxide)
 - (D) H₂SO₄
 - Answer: (C) CO (Carbon monoxide)
 - Solution:
 - Carbon monoxide is directly emitted from sources (like incomplete combustion), making it a primary pollutant. PAN, smog, and sulfuric acid are secondary pollutants, formed from primary pollutants.
- 18. Question: (Chemical Thermodynamics)
 - For an endothermic reaction, which of the following statements is true?
 - (A) ΔH is negative.
 - \circ (B) Δ H is positive
 - \circ (C) Δ S is negative
 - \circ (D) ΔG is negative
 - Answer: (B) Δ H is positive
 - Solution:
 - Endothermic reactions absorb heat from the surroundings, so ΔH (enthalpy change) is positive.

CollegeDekh