Sample KCET Physics Question Paper and Answer Key PDF

1. Question: (Mechanics)

- A body is projected vertically upwards with a velocity of 49 m/s. The maximum height to which it rises is:
 - o (A) 122.5 m
 - **(B) 100 m**
 - (C) 75 m
 - o (D) 50 m
- Answer: (A) 122.5 m
- Solution:
 - \circ We can use the equation: v2=u2+2as
 - Where:
 - v = final velocity (0 m/s at maximum height)
 - u = initial velocity (49 m/s)
 - a = acceleration due to gravity (-9.8 m/s²)
 - s = displacement (maximum height)
 - So, 0=(49)2+2(-9.8)s
 - s=(492)/(2*9.8)=122.5m
- 2. Question: (Electricity)
 - Two resistors of 4 Ω and 6 Ω are connected in parallel. The combination is connected across a 12 V battery. The current through the 4 Ω resistor is:
 - (A) 2 A
 - (B) 3 A
 - (C) 4 A
 - (D) 6 A
 - Answer: (B) 3 A
 - Solution:
 - First, find the equivalent resistance (R) of the parallel combination:
 - 1/R=1/4+1/6=5/12
 - R=12/5=2.4Ω
 - Then, find the total current (I) through the circuit:
 - I=V/R=12/2.4=5A
 - Next, find the voltage across the parallel combination (which is the same as the battery voltage, 12 V).

 $\circ~$ Finally, find the current (I4) through the 4 Ω resistor:

■ I4=V/R4=12/4=3A

- 3. Question: (Optics)
 - The refractive index of glass is 1.5. The speed of light in glass is:
 - (A) 2 × 10⁸ m/s
 - (B) 3 × 10⁸ m/s
 - (C) 4.5 × 10⁸ m/s
 - (D) 1.5 × 10⁸ m/s
 - Answer: (A) 2 × 10⁸ m/s
 - Solution:
 - Refractive index (n) = speed of light in vacuum (c) / speed of light in medium (v)
 - ∘ n=c/v
 - Therefore, v=c/n
 - v=(3×108m/s)/1.5=2×108m/s
- 4. Question: (Thermodynamics)
 - One mole of an ideal gas at temperature T is adiabatically expanded so that its volume doubles. The final temperature of the gas is:
 - (A) T/2γ−1
 - (B) T/21-γ
 - (C) 2T
 - (D) T
 - Answer: (A) T/2γ-1
 - Solution:
 - For an adiabatic process, $TV\gamma 1 = constant$.
 - Therefore, T1V1 γ -1=T2V2 γ -1,
 - Given T1=T and V2=2V1, we have:
 - T(V1)γ-1=T2(2V1)γ-1
 - T=T2(2γ-1)
 - T2=T/2γ-1
- 5. Question: (Modern Physics)
 - The de Broglie wavelength of an electron accelerated through a potential difference of V volts is:

- (A) $h/\sqrt{2meV}$
- (B) $\sqrt{2meV}/h$
- (C) h/2meV
- (D) 2meV/h
- Answer: (A) $h/\sqrt{2meV}$
- Solution:
- Solution:
 - Kinetic energy (KE) of the electron = eV
 - KE = $p^2/2m$, where p is momentum and m is mass.
 - Therefore, $eV=p^2/2m$, so $p=\sqrt{2meV}.$
 - De Broglie wavelength (λ) = h/p, where h is Planck's constant.
 - Thus, $\lambda = h/\sqrt{2meV}$.
- 6. Question: (Electrostatics)
 - Two point charges +q and -q are placed at a distance 'd' apart. The field at a point midway between them is:
 - (A) Zero
 - (B) q/4πε0d2
 - (C) q/πε0d2
 - (D) 4q/πε0d2
 - Answer: (C) q/πε0d2
 - Solution:

- Electric field due to +q at the midpoint: E1=q/4 $\pi\epsilon$ 0(d/2)2=q/ $\pi\epsilon$ 0d2
- Electric field due to -q at the midpoint: E2=q/4 $\pi\epsilon$ 0(d/2)2=q/ $\pi\epsilon$ 0d2
- Since both fields are in the same direction, the total field is:
 - E=E1+E2=2q/4πε0(d/2)2=q/πε0d2
- 7. Question: (Magnetic Effects of Current)
 - A long straight wire carries a steady current I. The magnetic field at a distance r from the wire is proportional to:
 - (A) r
 - (B) 1/r
 - (C) r2
 - (D) 1/r2

- Answer: (B) 1/r
- Solution:
 - The magnetic field (B) due to a long straight wire carrying current I is given by:
 B=μ0l/2πr
 - Therefore, B is proportional to 1/r.
- 8. Question: (Wave Optics)
 - In a Young's double-slit experiment, the distance between the slits is 0.2 mm and the screen is placed 1 m away. The fringe width is 3 mm. The wavelength of light used is:
 - (A) 400 nm
 - **(B) 500 nm**
 - (C) 600 nm
 - (D) 700 nm
 - Answer: (C) 600 nm
 - Solution:
 - Fringe width (β) = λ D/d, where:
 - λ = wavelength
 - D = distance to the screen
 - d = distance between slits
 - $\lambda = \beta d/D = (3 \times 10^{-3} \text{ m}) \times (0.2 \times 10^{-3} \text{ m}) / (1 \text{ m}) = 6 \times 10^{-7} \text{ m} = 600 \text{ nm}$

9. Question: (Semiconductor Physics)

- In a p-n junction diode, the depletion region contains:
 - (A) Electrons
 - (B) Holes
 - (C) Both electrons and holes
 - (D) Fixed ions
- Answer: (D) Fixed ions
- Solution:
 - The depletion region is formed by the diffusion of electrons and holes across the junction, leaving behind immobile ionized donor and acceptor atoms, which are fixed ions.
- 10. Question: (Rotational Motion)
 - A disc of the moment of inertia I am rotating freely with angular velocity ω. If its radius is doubled, its angular velocity will become:
 - o (A) ω/4
 - o (B) ω/2

- ο **(C) 2ω**
- ο (D) 4ω
- Answer: (A) ω/4
- Solution:
 - By the conservation of angular momentum, $I_1\omega_1 = I_2\omega_2$.
 - The moment of inertia of a disc is $I = (1/2)MR^2$.
 - If the radius is doubled, $I_2 = (1/2)M(2R)^2 = 4I_1$.
 - Therefore, $I\omega = 4I\omega_2$, so $\omega_2 = \omega/4$.
- 11. Question: (Gravitation)
 - The acceleration due to gravity on the surface of the moon is 1/6th that on the surface of the earth. If the radius of the moon is 1/4th that of the earth, then the ratio of the densities of the moon and earth is:
 - (A) 3/8
 - **(B) 8/3**
 - (C) 4/9
 - (D) 9/4
 - Answer: (A) 3/8
 - Solution:
 - $g = (4/3)\pi G\rho R$, where ρ is density and R is radius.
 - \circ g_moon/g_earth = (p_moon/p_earth) × (R_moon/R_earth).
 - $(1/6) = (\rho_moon/\rho_earth) \times (1/4).$
 - $\rho_{moon/\rho_{earth}} = (1/6) \times 4 = 4/6 = 2/3.$
 - However, the question often implies using the formula g=GM/R², and then using density = M/V.
 - g = GM/R² = G(4/3 * pi * R³ * density)/R² = G(4/3 * pi * R * density)
 - therefore, ratio of density is $(g_moon/g_earth)/(R_moon/R_earth) = (1/6)/(1/4) = 4/6 = 2/3$.
 - There seems to be an error in the provided answer, the correct ratio is 2/3.
 - If the question was changed to have the gravitation be 1/6 and the radius of the moon be 1/2 then the answer would be 1/3.
- 12. Question: (Kinetic Theory of Gases)
 - The average kinetic energy of a molecule of an ideal gas at temperature T is proportional to:
 - (A) T¹/²
 - **(B)** T
 - (C) T³/²
 - (D) T²

- Answer: (B) T
- Solution:
 - The average kinetic energy of a molecule is (3/2)kT, where k is Boltzmann's constant. Therefore, it is proportional to T.