MHT-CET 2023 Question Paper - Maths

12th May 2023 (Shift - I)

If the matrix $A = \begin{bmatrix} 1 & 2 \\ -5 & 1 \end{bmatrix}$ and $A^{-1} = xA + yI$, 1.

when I is a unit matrix of order 2, then the value of 2x + 3y is

- (A) $\frac{8}{11}$

- $\int \frac{x^2 + 1}{x(x^2 1)} \, \mathrm{d}x =$
 - $\log x(x^2 1) + c$, where c is a constant of integration.
 - (B) $\log\left(\frac{x^2-1}{x}\right) + c$, where c is a constant of integration.
 - $\log(x^2 1) + c$, where c is a constant of (C)
 - (D) $\log\left(\frac{x^2+1}{x}\right) + c$, where c is a constant of
- 3. Let \overline{A} be a vector parallel to line of intersection of planes P₁ and P₂ through origin, P₁ is parallel to the vectors $2\hat{j}+3\hat{k}$ and $4\hat{j}-3\hat{k}$ and P_2 is parallel to $\hat{j} - \hat{k}$ and $3\hat{i} + 3\hat{j}$, then the angle between \overline{A} and $2\hat{i} + \hat{j} - 2\hat{k}$ is
 - (A)

- Let PQR be a right angled isosceles triangle, 4. right angled at P(2, 1). If the equation of the line QR is 2x + y = 3, then the equation representing the pair of lines PQ and PR is
 - (A) $3x^2 3y^2 + 8xy + 20x + 10y + 25 = 0$
 - (B) $3x^2 3y^2 + 8xy 20x 10y + 25 = 0$
 - (C) $3x^2 3y^2 + 8xy + 10x + 15y + 20 = 0$
 - (D) $3x^2 3y^2 8xy 10x 15y 20 = 0$
- The derivative of $f(\tan x)$ w.r.t. $g(\sec x)$ at $x = \frac{\pi}{4}$ where f'(1) = 2 and g'($\sqrt{2}$) = 4 is
- (B) $\sqrt{2}$
- (C)
- (D)

- If λ is the perpendicular distance of a point P on the circle $x^{2} + y^{2} + 2x + 2y - 3 = 0$, from the line 2x + y + 13 = 0, then maximum possible value of λ is
 - (A) $2\sqrt{5}$
- (C) $4\sqrt{5}$
- 7.

The integral
$$\int \frac{\sin^2 x \cos^2 x}{\left(\sin^5 x + \cos^3 x \sin^2 x + \sin^3 x \cos^2 x + \cos^5 x^2\right)} dx \text{ is}$$

- (A) $\frac{1}{3(1+\tan^3 x)}$ + c, where c is a constant of integration.
- $\frac{-1}{3(1+\tan^3 x)}$ + c, where c is a constant of integration.
- (C) $\frac{1}{1+\cot^3 x}$ + c, where c is a constant of integration.
- $\frac{-1}{1+\cos^3 x}$ + c, where c is a constant of integration.
- If $\frac{dy}{dx} = y + 3$ and y(0) = 2, then $y(\log 2) =$
- (C) 13
- The solution set of $8\cos^2\theta + 14\cos\theta + 5 = 0$, in the interval $[0, 2\pi]$, is

- (A) $\left\{ \frac{\pi}{3}, \frac{2\pi}{3} \right\}$ (B) $\left\{ \frac{\pi}{3}, \frac{4\pi}{3} \right\}$ (C) $\left\{ \frac{2\pi}{3}, \frac{4\pi}{3} \right\}$ (D) $\left\{ \frac{2\pi}{3}, \frac{5\pi}{3} \right\}$
- If the line $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2}$

 $\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$ are at right angles, then p =

- (A) $\frac{70}{11}$ (B) $\frac{11}{70}$ (C) $\frac{-70}{11}$ (D) $\frac{-11}{70}$
- If T_n denotes the number of triangles which can be formed using the vertices of regular polygon of n sides and $T_{n+1} - T_n = 21$, then n =
 - (A) 5
- (B)
- (C)
- (D)

MHT-CET 2023 Question Paper - Maths 12th May 2023 (Shift – I)

- If $g(x) = 1 + \sqrt{x}$ and $f(g(x)) = 3 + 2\sqrt{x} + x$, 12. then f(f(x)) is (A) $x^2 + 4x + 6$ (B) $x^2 + x + 6$

- (B) $x^4 + x^2 + 6$ (D) $x^4 + 4x^2 + 6$
- The function $f(x) = \sin^4 x + \cos^4 x$ is increasing in 13.
 - (A) $0 < x < \frac{\pi}{8}$ (B) $\frac{\pi}{4} < x < \frac{\pi}{2}$
- - (C) $\frac{3\pi}{8} < x < \frac{5\pi}{8}$ (D) $\frac{5\pi}{8} < x < \frac{3\pi}{4}$
- If the variance of the numbers -1, 0, 1, k is 5, where k > 0, then k is equal to
 - (A) $2\sqrt{\frac{10}{3}}$
- (C) $4\sqrt{\frac{5}{2}}$
- (D) $\sqrt{6}$
- $\lim_{x\to 0} \frac{\cos 7x^{\circ} \cos 2x^{\circ}}{r^{2}} \text{ is}$ 15.
 - (A) $\frac{-45}{2}\pi^2$
- (B) $\frac{-45}{2}\pi$
- (C) $\frac{-\pi^2}{1440}$ (D) $\frac{-\pi^2}{2880}$
- If $\tan \theta = \frac{\sin \alpha \cos \alpha}{\sin \alpha + \cos \alpha}$, $0 \le \alpha \le \frac{\pi}{2}$, then the 16. value of $\cos 2\theta$ is
 - (A) $\cos 2\alpha$
- (B) sin α
- (C) $\cos \alpha$
- (D) $\sin 2\alpha$
- The contrapositive of "If x and y are integers 17. such that xy is odd, then both x and y are odd" is
 - If both x and y are odd integers, then xy is
 - (B) If both x and y are even integers, then xy is even.
 - If x or y is an odd integer, then xy is odd. (C)
 - If both x and y are not odd integers, then the product xy is not odd.
- 18. The decay rate of radio active material at any time t is proportional to its mass at that time. The mass is 27 grams when t = 0. After three hours it was found that 8 grams are left. Then the substance left after one more hour is
 - (A) $\frac{27}{8}$ grams
 - (A) $\frac{27}{8}$ grams (B) $\frac{81}{4}$ grams (C) $\frac{16}{3}$ grams (D) $\frac{16}{9}$ grams
- 19. If x = -1 and x = 2 are extreme points of $f(x) = \alpha \log x + \beta x^2 + x$, α and β are constants, then the value of $\alpha^2 + 2\beta$ is
 - (A) -3
- 3 (B)
- (C)
- 5 (D)

- 20. $\overline{u}, \overline{v}, \overline{w}$ are three vectors such that $|\overline{u}| = 1$, $|\overline{v}| = 2$, $|\overline{w}| = 3$. If the projection of \overline{v} along \overline{u} is equal to projection of \overline{w} along \overline{u} and \overline{v} , \overline{w} are perpendicular to each other, then $|\overline{u} - \overline{v} + \overline{w}| =$
- (B)
- (C) $\sqrt{14}$
- (D) 2
- $\int_{1}^{4} |2x 5| \, \mathrm{d}x =$ 21.
 - (A) $\frac{13}{2}$ (B) $\frac{15}{2}$ (C) $\frac{17}{2}$

- 22. The approximate value of $\sin (60^{\circ} 0' 10'')$ is (given that $\sqrt{3} = 1.732$, 1' = 0.0175°)
 - (A) 0.08660243
- (B) 0.0008660243
- (C) 0.8660243
- (D) 0.008660243
- 23. The p.m.f of random variate X is

$$P(X) = \begin{cases} \frac{2x}{n(n+1)}, & x = 1, 2, 3, \dots, n \\ 0, & \text{otherwise} \end{cases}$$

Then E(X) =

- (B) $\frac{2n+1}{3}$ (D) $\frac{2n-1}{3}$

3

- 24. If the area of the triangle with vertices (1, 2, 0), (1, 0, 2) and (0, x, 1) is $\sqrt{6}$ square units, then the value of x is
 - (A) 1
- (B) 2
- (C)
- (D) 4
- The differential equation cos(x + y) dy = dx has 25. the general solution given by
 - (A) $y = \sin(x + y) + c$, where c is a constant.
 - (B) $y = \tan(x + y) + c$, where c is a constant
 - (C) $y = \tan\left(\frac{x+y}{2}\right) + c$, where c is a constant
 - (D) $y = \frac{1}{2} \tan(x + y) + c$, where c is a constant
- 26. An experiment succeeds twice as often as it fails. Then the probability, that in the next 6 trials there will be at least 4 successes, is
 - (A)
- 729
- 491 (D) 729
- 27. A plane is parallel to two lines whose direction ratios are 1, 0, -1 and -1, 1, 0 and it contains the point (1, 1, 1). If it cuts the co-ordinate axes at A, B, C then the volume of the tetrahedron OABC (in cubic units) is
 - (A)
- (B)
- (C) 9
- (D)
- 27

MHT-CET 2023 Question Paper - Maths 12th May 2023 (Shift – I)

- The area of the region bounded by the curves 28. $y = e^x$, $y = \log x$ and lines x = 1, x = 2 is

 - (A) $(e-1)^2$ sq. units (B) (e^2-e+1) sq. units
 - (C) $(e^2 e + 1 2\log 2)$ sq. units
 - (D) $(e^2 + e 2\log 2)$ sq. units
- $y = (1 + x) (1 + x^2) (1 + x^4) \dots (1 + x^{2n}),$ then the value of $\frac{dy}{dx}$ at x = 0 is
- (C) 1
- (D) 2
- A and B are independent events with $P(A) = \frac{1}{A}$ 30. and $P(A \cup B) = 2P(B) - P(A)$, then P(B) is

- (D) $\frac{2}{5}$
- 31. If a > 0 and $z = \frac{(1+i)^2}{a+i}$, $(i = \sqrt{-1})$ has magnitude $\frac{2}{\sqrt{5}}$ then \bar{z} is equal to
 - (A) $-\frac{2}{5} + \frac{4}{5}i$ (B) $\frac{2}{5} \frac{4}{5}i$
 - (C) $-\frac{2}{5} \frac{4}{5}i$ (D) $\frac{2}{5} + \frac{4}{5}i$
- The angle between the tangents to the curves 32. $y = 2x^2$ and $x = 2y^2$ at (1, 1) is
 - (A) $\tan^{-1}\left(\frac{15}{8}\right)$ (B) $\tan^{-1}\left(\frac{7}{8}\right)$
 - (C) $\tan^{-1}\left(\frac{3}{4}\right)$ (D) $\tan^{-1}\left(\frac{1}{4}\right)$
- If $x = \operatorname{cosec}\left(\tan^{-1}\left(\cos\left(\cot^{-1}\left(\sec\left(\sin^{-1}a\right)\right)\right)\right)\right)$ 33.

 - $a \in [0, 1]$ (A) $x^2 a^2 = 3$ (B) $x^2 + a^2 = 3$ (C) $x^2 a^2 = 2$ (D) $x^2 + a^2 = 2$
- The distance of the point P(-2, 4, -5) from the line $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$ is
 - (A) $\frac{\sqrt{37}}{}$
- (B) $\sqrt{\frac{37}{10}}$
- (D)
- The value of $\sin(\cot^{-1}x)$ is 35.
 - (A) $\frac{1}{\sqrt{1+r^2}}$
- (B)
- (D) $x\sqrt{1+x}$

36. The values of a and b, so that the function

$$f(x) = \begin{cases} x + a\sqrt{2}\sin x , & 0 \le x \le \frac{\pi}{4} \\ 2x\cot x + b , & \frac{\pi}{4} \le x \le \frac{\pi}{2} \\ a\cos 2x - b\sin x, & \frac{\pi}{2} < x \le \pi \end{cases}$$

is continuous for $0 \le x \le \pi$, are respectively given by

- (C) $-\frac{\pi}{6}, -\frac{\pi}{12}$
- (C) $\frac{\pi}{6}, \frac{\pi}{12}$ (D) $\frac{\pi}{6}, -\frac{\pi}{12}$
- 37. Two adjacent sides of a parallelogram ABCD $\overline{AB} = 2\hat{i} + 10\hat{i} + 11\hat{k}$ given by $\overline{AD} = -\hat{i} + 2\hat{j} + 2\hat{k}$. The side AD is rotated by an acute angle α in the plane of parallelogram so that AD becomes AD'. If AD' makes a right angle with side AB, then the cosine of the angle α is given by

- (D) $\frac{4\sqrt{5}}{9}$
- $\frac{\csc x \, dx}{\cos^2 \left(1 + \log \tan \frac{x}{2}\right)} =$ 38.
 - (A) $\tan\left(1+\log\left(\tan\frac{x}{2}\right)\right) + c$, where c is constant of integration
 - $\tan (1 + \log(\tan x)) + c$, where c is (B) constant of integration
 - $\tan\left(\log\left(\tan\frac{x}{2}\right)\right)$ + c, where c is constant of
 - (D) $\tan\left(\tan\frac{x}{2}\right) + c$, where c is constant of integration.
- 39. The co-ordinates of the points on the line 2x - y = 5 which are the distance of 1 unit from the line 3x + 4y = 5 are
 - $\left(\frac{30}{11}, \frac{-5}{11}\right), \left(\frac{20}{11}, \frac{15}{11}\right)$
 - (B) $\left(\frac{-30}{11}, \frac{5}{11}\right), \left(\frac{-20}{11}, \frac{15}{11}\right)$
 - (C) $\left(\frac{30}{11}, \frac{5}{11}\right), \left(\frac{20}{11}, \frac{-15}{11}\right)$
 - (D) $\left(\frac{-30}{11}, \frac{5}{11}\right), \left(\frac{-20}{11}, \frac{-15}{11}\right)$

MHT-CET 2023 Question Paper - Maths 12th May 2023 (Shift – I)

- 40. The centroid of tetrahedron with vertices at A(-1, 2, 3), B(3, -2, 1), C(2, 1, 3) and D(-1, -2, 4) is

 - (A) $\left(\frac{3}{4}, \frac{-1}{4}, \frac{11}{4}\right)$ (B) $\left(\frac{5}{4}, \frac{-3}{4}, \frac{7}{4}\right)$

 - (C) $\left(\frac{-3}{4}, \frac{-1}{4}, \frac{11}{4}\right)$ (D) $\left(\frac{-5}{4}, \frac{-3}{4}, \frac{-7}{4}\right)$
- If $\log(x + y) = 2xy$, then $\frac{dy}{dx}$ at x = 0 is
 - (A)
- (C)
- (D) -2
- 42. Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Then the probability distribution of number of jacks is
 - (A) X = x0 2 144 24 1 P(X = x)169 169 169
 - (B) X = x0 2 1 1 144 24 P(X = x)169 169 169
 - (C) X = x0 1 2 144 24 1 P(X = x)169 169 169
 - (D) 0 2 X = x1 P(X = x)144 24 1 169 169 169
- 43. For a feasible region OCDBO given below, the maximum value of the objective function z = 3x + 4y is

- (A) 70
- (B) 100
- (C) 110
- (D) 130

- 44. In a triangle, the sum of lengths of two sides is x and the product of the lengths of the same two sides is y. If $x^2 - c^2 = y$, where c is the length of the third side of the triangle, then the circumradius of the triangle is

- If $\int \cos^{\frac{3}{5}} x \cdot \sin^3 x \, dx = \frac{-1}{m} \cos^m x + \frac{1}{n} \cos^n x + c$,

(where c is the constant of integration), then (m, n) =

- (A) $\left(\frac{18}{5}, \frac{8}{5}\right)$ (B) $\left(\frac{-8}{5}, \frac{18}{5}\right)$ (C) $\left(\frac{8}{5}, \frac{18}{5}\right)$ (D) $\left(\frac{-18}{5}, \frac{-8}{5}\right)$
- If $\overline{a}, \overline{b}, \overline{c}$ are three vectors, $|\overline{a}| = 2$, $|\overline{b}| = 4$, $|\overline{c}| = 1$, $|\overline{b} \times \overline{c}| = \sqrt{15}$ and $\overline{b} = 2\overline{c} + \lambda \overline{a}$, then the value of λis
 - (A) 2
- $2\sqrt{2}$ (C) 1 (B)
- (D) 4
- 47. A ladder 5 meters long rests against a vertical wall. If its top slides downwards at the rate of 10 cm/s, then the angle between the ladder and the floor is decreasing at the rate of rad./s when it's lower end is 4 m away from the wall.
 - (A) -0.1
- (B) -0.025
- (C) 0.1
- (D) 0.025
- The equation of the plane through (-1, 1, 2)48. whose normal makes equal acute angles with co-ordinate axes is
 - (A) x+y+z-3=0 (B) x+y+z-2=0 (C) x+y-z-2=0 (D) x-y+z-3=0
- 49. The inverse of the statement

"If the surface area increase, then the pressure decreases.", is

- If the surface area does not increase, then the pressure does not decrease.
- (B) If the pressure decreases, then the surface area increases.
- If the pressure does not decreases, then the surface area does not increase.
- If the surface area does not increase, then the pressure decreases.
- 50. If general solution of $\cos^2\theta 2\sin\theta + \frac{1}{4} = 0$ is
 - $\theta = \frac{n\pi}{\Delta} + (-1)^n \frac{\pi}{R}$, $n \in \mathbb{Z}$, then A + B has the
 - value (A)
- (B) 6
- (C) 1
- (D) -7