

General Aptitude

Q.1 – Q.5 Carry ONE mark Each

Q.2	As the police officer was found guilty of embezzlement, he was dismissed from the service in accordance with the Service Rules. Select the most appropriate option to complete the above sentence.
(A)	sumptuously
(B)	brazenly
(C)	unintentionally
(D)	summarily 7 Roorkee

Q.3	The sum of the following infinite series is:
	$\frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \cdots$
(A)	π
(B)	1 + <i>e</i>
(C)	e-1
(D)	е
Q.4	A thin wire is used to construct all the edges of a cube of 1 m side by bending, cutting and soldering the wire. If the wire is 12 m long, what is the minimum number of cuts required to construct the wire frame to form the cube?
(A)	3
(B)	4
(C)	6 GALE 2025
(D)	12
	Roorkee

Т

Q.5	The figures I, II and III are parts of a sequence. Which one of the following options comes next in the sequence at IV?
	I II III IV
(A)	
(B)	
(C)	ATE 2025
(D)	Roorke

Г

Т

٦

Q.6 – Q.10 Carry TWO marks Each

Q.6	"Why do they pull down and do away with crooked streets, I wonder, which are my delight, and hurt no man living? Every day the wealthier nations are pulling down one or another in their capitals and their great towns: they do not know why they do it; neither do I. It ought to be enough, surely, to drive the great broad ways which commerce needs and which are the life-channels of a modern city, without destroying all history and all the humanity in between: the islands of the past."				
	(From Hilaire Belloc's "The Crooked Streets")				
	Based only on the information provided in the above passage, which one of the following statements is true?				
(A)	The author of the passage takes delight in wondering.				
(B)	The wealthier nations are pulling down the crooked streets in their capitals.				
(C)	In the past, crooked streets were only built on islands.				
(D)	Great broad ways are needed to protect commerce and history.				

1/7 Roorkee

Q.7 Rohit goes to a restaurant for lunch at about 1 PM. When he enters the restaurant, he notices that the hour and minute hands on the wall clock are exactly coinciding. After about an hour, when he leaves the restaurant, he notices that the clock hands are again exactly coinciding. How much time (in minutes) did Rohit spend at the restaurant? $64\frac{6}{11}$ (A) $66\frac{5}{13}$ (B) $65\frac{5}{11}$ (C) $66\frac{6}{13}$ (D) 17 Roorkee

Q.9	A circle with center at $(x, y) = (0.5, 0)$ and radius = 0.5 intersects with another circle with center at $(x, y) = (1, 1)$ and radius = 1 at two points. One of the points of intersection (x, y) is:			
(A)	(0,0)			
(B)	(0.2, 0.4)			
(C)	(0.5, 0.5)			
(D)	(1,2)			
	GATE 2025 // Roorkee			

An object is said to have an n-fold rotational symmetry if the object, rotated by an Q.10 angle of $\frac{2\pi}{n}$, is identical to the original. Which one of the following objects exhibits 4-fold rotational symmetry about an axis perpendicular to the plane of the screen? Note: The figures shown are representative. (A) (B) (C) (D)

Q.11 – Q.35 Carry ONE mark Each

-	
Q.11	To manufacture paper from <u>(i)</u> , the <u>(ii)</u> must be freed from the binding matrix of <u>(iii)</u> in the pulping step. Which one of the following is the CORRECT option to fill in the gaps (i), (ii) and (iii)?
(A)	(i) wood, (ii) cellulose fibers, (iii) lignin
(B)	(i) lignin, (ii) cellulose fibers, (iii) wood
(C)	(i) lignin, (ii) wood, (iii) cellulose fibers
(D)	(i) wood, (ii) lignin, (iii) cellulose fibers
Q.12	Consider a Cartesian coordinate system defined over a 3-dimensional vector space with orthogonal unit basis vectors \hat{i}, \hat{j} and \hat{k} . Let vector $\boldsymbol{a} = \sqrt{2}\hat{i} + \frac{1}{\sqrt{2}}\hat{j} + \hat{k}$, and vector $\boldsymbol{b} = \frac{1}{\sqrt{2}}\hat{i} + \sqrt{2}\hat{j} - \hat{k}$. The inner product of these vectors $(\boldsymbol{a} \cdot \boldsymbol{b})$ is
(A)	OATE 202
(B)	1 GAIL 2025
(C)	-1 // Deerkee
(D)	2

Q.13	Consider two complex numbers $z_1 = 1 - i$ and $z_2 = i$. The argument of $z_1 z_2$ is
(A)	0
(B)	$\frac{\pi}{4}$
(C)	$\frac{\pi}{2}$
(D)	π
Q.14	A box contains 3 identical green balls and 7 identical blue balls. Two balls are randomly drawn without replacement from the box. The probability of drawing 1 green and 1 blue ball is
(A)	$\frac{{}^{3}P_{1} \times {}^{7}P_{1}}{{}^{10}P_{2}}$
(B)	$\frac{10P_3 \times 10P_7}{10P_2}$
(C)	$\frac{{}^{10}C_3 \times {}^{10}C_7}{{}^{10}C_2}$
(D)	$\frac{{}^{3}C_{1} \times {}^{7}C_{1}}{{}^{10}C_{2}}$

Q.15	The number of independent intensive variables that need to be specified to determine the thermodynamic state of a ternary mixture at vapor-liquid-liquid equilibrium is
(A)	0
(B)	1
(C)	2
(D)	3
Q.16	The boundary of a system does not allow exchange of either mass or energy (in the form of heat and/or work) with the surroundings. The system is termed
(A)	Isolated
(B)	Open
(C)	Adiabatic
(D)	Closed E Z 0 2 5
	KOOTN

Q.17 In industrial heat exchanger design, the overall heat transfer coefficient U is estimated from the equation

$$\frac{1}{U} = \frac{1}{h_i} + \frac{1}{h_o}$$

where h_i and h_o are the convective heat transfer coefficients on the inner and outer side of the tube, respectively. This is valid for <u>(i)</u> tube of <u>(ii)</u> thermal conductivity.

Which one of the following is the CORRECT option to fill in the gaps (i) and (ii)?

- (A) (i) thick-walled, (ii) high
- (B) (i) thin-walled, (ii) high
- (C) (i) thin-walled, (ii) low

(i) thick-walled, (ii) low

(D)

Q.18	The sum boundary	o <mark>f the comp</mark> of a solid b	oonents of ody in the	the force due direction nor	e to pr mal to	ressure o the flo	and shear ow is	at the so	olid-fluid
(Λ)	Drog								

(A)	Drag
(B)	Friction
(C)	Lift Roorkee
(D)	Buoyancy

Q.19	Choose the CORRECT option for pathlines, streaklines and streamlines for a STEADY flow field.
(A)	All three lines are identical
(B)	Only pathlines and streaklines are identical
(C)	Only pathlines and streamlines are identical
(D)	Only streamlines and streaklines are identical
Q.20	Choose the CORRECT ordering of the diameter d of the different types of pores in a solid catalyst.
(A)	$d_{\text{Micro-pore}} < d_{\text{Macro-pore}} < d_{\text{Meso-pore}}$
(B)	$d_{\text{Macro-pore}} < d_{\text{Meso-pore}} < d_{\text{Micro-pore}}$
(C)	$d_{\text{Meso-pore}} < d_{\text{Micro-pore}} < d_{\text{Macro-pore}}$
(D)	$d_{ m Micro-pore} < d_{ m Meso-pore} < d_{ m Macro-pore}$
	Roorkee

Q.21	Schmidt number is defined as
(A)	Mass Diffusivity Thermal Diffusivity
(B)	Momentum Diffusivity Mass Diffusivity
(C)	Momentum Diffusivity Thermal Diffusivity
(D)	Thermal Diffusivity Mass Diffusivity
Q.22	If k is the mass transfer coefficient and D_{ν} is the molecular diffusivity, which one of the following statements is NOT CORRECT with respect to mass transfer theories?
(A)	For Film theory, $k \propto D_v$
(B)	For Penetration theory, $k \propto D_v^{1/3}$
(C)	For Surface Renewal theory, $k \propto D_v^{1/2}$
(D)	For Boundary Layer theory, $k \propto D_v^{2/3}$

Q.23	Choose the CORRECT statement that describes the dependence of the variance (σ_{Θ}^2) of the residence time distribution (RTD) with respect to the number of tanks (n) in the Tanks-in-Series model of non-ideal reactors.		
(A)	σ_{Θ}^2 monotonically increases with n		
(B)	σ_{Θ}^2 first increases and then decreases with n		
(C)	σ_{Θ}^2 first decreases and then increases with <i>n</i>		
(D)	σ_{Θ}^2 monotonically decreases with <i>n</i>		
Q.24	The vortex shedding meter is primarily used for measuring		
(A)	Fluid Flow Rate		
(B)	Liquid Level		
(C)	Fluid Temperature		
(D)	Fluid Pressure		
	Roorkee		

Q.26	The capital cost (<i>CC</i>) of an industrial equipment varies with its capacity (<i>S</i>) as $CC \propto S^{\beta}$. The rule-of-thumb value of the exponent β is		
(A)	0.4		
(B)	0.6		
(C)	0.8		
(D)	1.0		
Q.27	In the production of polyvinyl chloride (PVC) from ethylene and chlorine, the sequential order of reactions is		
(A)	Chlorination followed by Dehydrochlorination		
(B)	Dehydrochlorination followed by Chlorination		
(C)	Hydrogenation followed by Chlorination		
(D)	Dehydrochlorination followed by Hydrogenation		
	17 Roorkee		

Q.28	In the CONTACT PROCESS for manufacturing sulphuric acid, the reaction converting SO_2 to SO_3 is
(A)	Exothermic and reversible
(B)	Endothermic and reversible
(C)	Exothermic and irreversible
(D)	Endothermic and irreversible

Q.29 Choose the option that correctly matches the items in Group 1 with those in Group 2.

	Group 1	Group 2	
	(P) Coking	(I)	Prolonged exposure of catalyst to high temperature
	(Q) Poisoning	(II)	Deposition of carbonaceous material on catalyst surface
	(R) Sintering	(III)	Irreversible chemisorption of molecules on active sites of catalyst
(A)	(P) - (III), (Q) - (I), (R) - (II))	
(B)	(P) - (II), (Q) - (III), (R) - (I))	
(C)	(P) – (II), (Q) – (I), (R) – (III)	
(D)	(P) – (I), (Q) – (III), (R) – (II)	
7	GAT	E	2025
	117	R	orkee

Q.30	Which of the following statements regarding multiple effect evaporators is/are TRUE?		
(A)	The pressure of the effect with fresh steam is the lowest for both forward feed and backward feed.		
(B)	Backward feed is preferred over forward feed for cold feed.		
(C)	Backward feed is preferred over forward feed for highly viscous concentrated product.		
(D)	The temperature of the effect with fresh steam is the lowest for both forward feed and backward feed.		
Q.31	Consider an enzymatic reaction that follows Michaelis-Menten kinetics. Let K_M , S, and V_{max} denote the Michaelis constant, substrate concentration, and maximum reaction rate, respectively. Which of the following statements is/are TRUE?		
(A)	For $S \ll K_M$, the reaction is apparent first-order in S.		
(B)	For $S \gg K_M$, the reaction rate is nearly independent of <i>S</i> .		
(C)	For $S = K_M$, the rate of reaction equals V_{max} .		
(D)	K_M is independent of the total enzyme concentration.		

Q.32	The following data is given for a ternary <i>ABC</i> gas mixture at 12 MPa and 308 K:				
		Component $i \rightarrow$	Α	В	С
		Уі	0.55	0.20	0.25
		$\hat{\phi}_i$	0.75	0.80	0.95
		y_i : mole fraction of	of component i in the second secon	ne gas mixture	
		$\hat{\phi}_i$: fugacity coefficient at 12 MPa and	icient of compon <mark>en</mark> I 308 K	t <i>i</i> in the gas mixt	ure
	The fu	igacity of the gas m	ixture is MP	a (rounded off to	3 decimal places).
Q.33	Ideal f separa two ga proces	onreacting gases A ted by a thin partitio ases mix till final e as is J/K (<i>roun</i>	and <i>B</i> are contained on, as shown in the quilibrium is reach <i>ded off to 1 decima</i>	ed inside a perfect figure. The partition ed. The change in <i>l place</i>).	tly insulated chamber, on is removed, and the n total entropy for the
		Gas A	Gas	$T_A = P_A $	$T_B = 273 \text{ K}$ = $P_B = 1 \text{ atm}$
		$T_A P_A V$	V_A $T_B P_B$		$V_B = 22.4 \text{ L}$ $V_A = 3V_B$
	GIVE	N: Universal	gas constant $R = 8$.314 J/(mol K)	

-

E

Q.36 – Q.65 Carry TWO marks Each

Q.36	Consider a Cartesian coordinate system with orthogonal unit basis vectors \hat{i}, \hat{j} defined over a domain: $x, y \in [0,1]$. Choose the condition for which the divergence of the vector field $v = ax\hat{i} - by\hat{j}$ is zero.		
(A)	a-b=0		
(B)	a < b		
(C)	a > b		
(D)	a + b = 0		
Q.37	A probability distribution function is given as		
	$p(x) = \begin{cases} \frac{1}{a}, & x \in (0, a) \\ 0, & \text{otherwise} \end{cases}$		
	where <i>a</i> is a positive constant. For a function $f(x) = x^2$, the expectation of $f(x)$ is		
(A)	$\frac{a^2}{3}$ GAIE 2025		
(B)	a ³ /Roorkee		
(C)	$\frac{2a^2}{3}$		
(D)	$\frac{2a^3}{3}$		

Q.38 A hot plate is placed in contact with a cold plate of a different thermal conductivity as shown in the figure. The initial temperature (at time t = 0) of the hot plate and cold plate are T_h and T_c , respectively. Assume perfect contact between the plates.

Which one of the following is an appropriate boundary condition at the surface S for solving the unsteady state, one-dimensional heat conduction equations for the hot plate and cold plate for t > 0?

(A)	Temperature at S is same for both the plates
(B)	Gradient of temperature at S is same for both the plates
(C)	Gradient of temperature vanishes at S
(D)	Temperature at S is the average of T_h and T_c

Q.40	500 mg of a dry adsorbent is added to a beaker containing 100 mL solution of concentration 100 mg phenol/(L solution). The adsorbent is separated out after 5 h of rigorous mixing. If the residual concentration in the solution after separating the adsorbent is 30 mg phenol/(L solution), the amount of phenol adsorbed (in mg per gram of dry adsorbent) is
(A)	7
(B)	14
(C)	28
(D)	18

Q.42	A zero-order gas phase reaction $A \rightarrow B$ with rate $(-r_A) = k = 100 \text{ mol/(L min)}$ is carried out in a mixed flow reactor of volume 1 L. Pure A is fed to the reactor at a rate of 1 mol/min. At time $t = 0$, the outlet flow is stopped while the inlet flow rate and reactor temperature remain unchanged. Assume that the reactor was operating under steady state before the flow was stopped ($t < 0$). The rate of consumption of A , $-dC_A/dt$, in mol/(L min), at $t = 1$ min is
(A)	63.2
(B)	36.8
(C)	90.6
(D)	99.0
1	
Q.43	For a steady state, fully developed laminar flow of a Newtonian fluid through a cylindrical pipe at a constant volumetric flow rate, which of the following statements regarding the pressure drop across the pipe (ΔP) is/are TRUE?
(A)	ΔP increases with fluid viscosity
(B)	ΔP increases with pipe length
(C)	ΔP increases with pipe diameter
(D)	ΔP remains unchanged with fluid viscosity

Q.47 Consider moist air with absolute humidity of 0.02 (kg moisture)/(kg dry air) at 1 bar pressure. The vapour pressure of water is given by the equation $\ln P^{sat} = 12 - \frac{4000}{T - 40}$ where P^{sat} is in bar and T is in K. The molecular weight of water and dry air are 18 kg/kmol and 29 kg/kmol, respectively. The dew temperature of the moist air is _____ °C (rounded off to the nearest integer). 0.48 An ideal monoatomic gas is contained inside a cylinder-piston assembly connected to a Hookean spring as shown in the figure. The piston is frictionless and massless. The spring constant is 10 kN/m. At the initial equilibrium state (shown in the figure), the spring is unstretched. The gas is expanded reversibly by adding 362.5 J of heat. At the final equilibrium state, the piston presses against the stoppers. Neglecting the heat loss to the surroundings, the final equilibrium temperature of the gas is _____ K (rounded off to the nearest integer). Pambient: 1 bar **:** Piston stopper Monoatomic rea: 100 cm² Unstretched spring ideal gas V_{initial}: 2 L k = 10 kN/m*T_{initial}*: 300 K 5 cm Minnennennennen For a monoatomic ideal gas, $C_v = \frac{3}{2}R$, where R = 8.314 J/(mol K) GIVEN: Roorke

Q.49 A leaf filter is operated at 1 atm (gauge). The volume of filtrate collected (V in m³) is related with the volumetric flow rate of the filtrate (q in m³/s) as: $\frac{1}{a} = \frac{1}{dV/dt} = 50 V + 100$ The volumetric flow rate of the filtrate at 1 hour is $___ \times 10^{-3}$ m³/s (rounded off to 2 decimal places). O.50 An adiabatic pump of efficiency 40% is used to increase the water pressure from 200 kPa to 600 kPa. The flow rate of water is 600 L/min. The specific heat of water is 4.2 kJ/(kg °C). Assuming water is incompressible with a density of 1000 kg/m³, the maximum temperature rise of water across the pump is <u>C</u> (*rounded off to 3 decimal places*). Water flowing at 70 kg/min is heated from 25 °C to 65 °C in a counter-flow double pipe heat Q.51 exchanger using hot oil. The oil enters at 110 °C and exits at 65 °C. If the overall heat transfer coefficient is 300 W/(m² K), the heat exchanger area is <u>m²</u> (rounded off to 1 decimal place). Specific heat of water and oil are 4.2 kJ/(kg °C) and 2 kJ/(kg °C), respectively. GIVEN:

117 Roorkee

Q.52	Consider laminar flow of water over a wide flat plate maintained at a uniform temperature of 50 °C as shown in the figure. The freestream velocity and temperature of water are 1.0 m/s (parallel to the plate) and 20 °C, respectively. The distance <i>x</i> from the leading edge, at which the thermal boundary layer thickness $\delta_T = 0.01$ m, is m (<i>rounded off to 1 decimal place</i>).		
	V = 1.0 m/s		
	GIVEN: kinematic viscosity: $\nu = 1.0 \times 10^{-6} \text{ m}^{2/\text{s}}$		
	Prandtl number: $Pr = 7.01$		
	velocity boundary layer thickness: $\delta_H = \frac{4.91x}{\sqrt{\frac{Vx}{v}}}$		
Q.53	An electrical wire of 2 mm diameter and 5 m length is insulated with a plastic layer of thickness 2 mm and thermal conductivity $k = 0.1$ W/(m K). It is exposed to ambient air at 30 °C. For a current of 5 A, the potential drop across the wire is 2 V. The air-side heat transfer coefficient is 20 W/(m ² K). Neglecting the thermal resistance of the wire, the steady state temperature at the wire-insulation interface is°C (rounded off to 1 decimal place).		
	ATE 200		
	GAIE ZUZS		
Q.54	A binary <i>AB</i> liquid mixture containing 30 mol% <i>A</i> is subjected to differential (Rayleigh) distillation at atmospheric pressure in order to recover 60 mol% <i>A</i> in the distillate. Assuming a constant relative volatility $\alpha_{AB} = 2.2$, the average composition of the collected distillate is mol% <i>A</i> (<i>rounded off to nearest integer</i>).		

Q.55	Gas containing 0.8 mol% component A is to be scrubbed with pure water in a packed bed column to reduce the concentration of A to 0.1 mol% in the exit gas. The inlet gas and water flow rates are 0.1 kmol/s and 3.0 kmol/s, respectively.
	For the dilute system, both the operating and equilibrium curves are considered linear. If the slope of the equilibrium line is 24, the number of transfer units, based on the gas side, N_{OG} is (rounded off to 1 decimal place).
Q.56	Solute A is absorbed from a gas into water in a packed bed operating at steady state. The absorber operating pressure and temperature are 1 atm and 300 K, respectively. At the gas-liquid interface
	$y_i = 1.5 x_i$ where y_i and x_i are the interfacial gas and liquid mole fractions of A , respectively. At a particular location in the absorber, the mole fractions of A in the bulk gas and in the bulk water are 0.02 and 0.002, respectively. If the ratio of the local individual mass transfer coefficients for the transport of A on the gas-side (k_y) to that on the water-side (k_x) , $\frac{k_y}{k_x} = 2$, then y_i equals (rounded off to 3 decimal places).
	ATE 200
Q.57	Components A and B form an azeotrope. The saturation vapour pressures of A and B at the boiling temperature of the azeotrope are 87 kPa and 72.7 kPa, respectively. The azeotrope composition is mol% A (rounded off to the nearest integer).
	GIVEN: $\ln \frac{\gamma_A}{\gamma_B} = 0.9(x_B^2 - x_A^2)$
	where x_i and γ_i are the liquid phase mole fraction and activity coefficient of component <i>i</i> , respectively.

Q.62 The block diagram of a series cascade control system (with time in minutes) is shown in the figure. For $\tau_I = 8 \min$ and $K_c^s = 1$, the maximum value of K_c^m , below which the cascade control system is stable, is _____ (rounded off to the nearest integer). $\tau_I s + 1$ 2 1 K_c^m K_c^s $\frac{1}{2s+1}$ (8s+1)(4s+1) $\tau_I S$ Q.63 It is proposed to install thermal insulation in a residence to save on the summer-monsoon season air-conditioning costs. The estimated yearly saving is 20 thousand rupees. The cost of installation of the insulation is 150 thousand rupees. The life of the insulation is 12 years. For a compound interest rate of 9% per annum, the minimum salvage value of the insulation for which the proposal is competitive, is _____ thousand rupees (*rounded off to nearest integer*). 117 Roorkee

