

JEE MAIN 2 APRIL 2025 SHIFT 1

MATHEMATICS QUESTION PAPER WITH ANSWER KEY

Q. No.	Question	Answers
1	Find the maximum value of <i>n</i> such that 50! is divisible by 3^n .	22
2	Let $P_n = \alpha^n + \beta^n$, $P_{10} = 123$, $P_9 = 76$, $P_8 = 47$ and $P_1 = 1$, the quadratic equation whose roots are $1/\alpha$ and $1/\beta$.	$x^{2} + x - 1 = 0$
3	The total number of 10 digits sequences formed by only $\{0, 1, 2\}$ where 1 should be used at least 5 times and 2 should be used exactly three times, is	2892
4	Let $a_1, a_2, a_3,$ is an A.P. and $\sum_{k=1}^{12} a_{k-1}^{2k} = -72/5 a_1$ and $\sum_{k=1}^{n} a_k^{2k} = 0$. Then the value of n is	11 80.
₅ D	Given the equation of a hyperbola H: $x^2/a^2 - y^2/b^2 = 1$ and its directrix is $x = \sqrt{10/81}$ with a focus at ($\sqrt{10,0}$), then find the value of 9(e + 1 ²), where I is length of latus rectum is	2587 e
6	If a twice differentiable function f satisfies $f'(x) = f(x)$ such that $f(0) = 1/2 = f'(0)$. Then find $f''(\pi/3)$.	e ^{π/3} /2
7	Let the system of equations, $3x - y + \beta z = 3$, $2x + \alpha y + z = -3$ and $x + y + 4z = 4$ has infinite solutions, then $22\beta - 9\alpha$ equals to	164
8	Let $f(x) = 2x^3 + 9x^2a + 12a^2x + 1$. Local minima and local maxima occur at p & q respectively, such that $p^2 = q$. Then the value of $f(3)$ is	37
9	If $\int_{0}^{e_{3}} [1/e^{x-1}] dx = \alpha - \log_{e} 2$, where [.] is Greatest Integer function, then α^{3} equals to	8

10	$\lim_{x \to 0} \frac{(\gamma - 1)e^{x^2} + x^2 \sin(\alpha x)}{\sin(2x) - 6x} = 3$	1
	If then $\alpha + 2\beta + \gamma$ is equal to:	
11	The term independent of x in the binomial expression of $\left(\frac{x+1}{x^{\frac{2}{3}}-x^{\frac{1}{3}}+1}-\frac{x-1}{x-x^{\frac{1}{2}}}\right)^{10}$ is:	210
12	Let E be an ellipse such that E: $x^2/18 + y^2/9 = 1$. Let point P lies on E such that S and S' are foci of ellipse. Then, find the sum of min (PS.PS') + max (PS.PS').	27
13	The area enclosed by $ 4 - x^2 \le y \le x^2$; $y \le 4$, $x \le 0$ equals to (in square units)	2/3(20√2 - 24)
14	Let $\theta \in [-2\pi, 2\pi]$ satisfying $2\cos^2\theta - \sin\theta - 1 = 0$. Then the number of solutions of equation is	6
15 D	If Q and R are two points on line L: $x-1/-1 = y-2/3 = z-3/5$ such that QR = 5. If P(0, 2, 3) be any point, then the area of \triangle PQR is	√85/14 eve
16	Let sinx cosy $(f(2x + 2y) - f(2x - 2y)) = \cos x \sin y f(2x + 2y) + f(2x - 2y)) \forall x, y \in R$ and $f'(0) = 1/2$. If $f(x)$ is differentiable function, then $f'''(2\pi/3)$ is -	-1/16
17	For a tetrahedron ABCD, the area of triangular face ABC, ACD and ABD is 5, 6 and 7 sq. units, respectively. If AB, AC and AD are mutually orthogonal, then the area of triangular face BCD is	√110 sq. units
18	If $2 + k^2 z/k + k\overline{z} = z$, $k \neq 0$, such that $z = x + iy$ and $y \neq 0$ and $ z - 1 + 2i = 1$, then find the maximum distance of point $(k + k^2i)$ from the given circle on which z lies	4

19	Let C_1 and C_2 are circle passing through (-9, 4), both are in contact with $x + y = 3$ nd $x - y = 3$ (tangent lines). If r_1 and r_2 are radius of C_1 and C_2 respectively, then $ r_1^2 - r_2^2 $ equals to	768
20	If $(I + A) = \begin{bmatrix} 1 & 0 & a \\ 1 & 1 & 0 \\ a & 2 & 2 \end{bmatrix}$, then find the value of det $((a + 1) \text{ adj } ((a - 1)A))$	$4a^2(a - 1)^3$ $(a^2 - 1)^3$
21	Given $A = \{1, 2,, 40\}$. Three numbers are randomly selected from set A. Then, the probability that the terms form an increasing G.P. is	1/494

CollegeDekho Discover · Prepare · Achieve