JEE-Main-02-04-2025 (Memory Based) [MORNING SHIFT]

Maths

Question: Find the maximum value of n such that 50! is divisible by 3ⁿ. **Options:**

- (a) 22
- (b) 16
- (c) 5
- (d) 1

Answer: (22)

$$\left[\frac{50}{3}\right] + \left[\frac{50}{9}\right] + \left[\frac{50}{27}\right]$$

$$=16+5+1=22$$

$$n = 22$$

Question: Let $P_n = \alpha^n + \beta^n$, $P_{10} = 123$, $P_9 = 76$, $P_8 = 47$ and $P_1 = 1$, the quadratic equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.

Options:

(a)
$$x^2 + x - 1 = 0$$

(b)
$$x^2 - 2x + 1 = 0$$

(c)
$$x^2 + x - 2 = 0$$

(d)
$$x^2 - x - 2 = 0$$

Answer: (a)

$$ax^2+bx+c=0 \quad b=-a$$
 $x^2-x+c=0$ $123-76+c(47)=0 \quad (P_{10}-P_9+cP_8=0)$ $c=-1$ $x^2-x-1=0$ (Equation with roots a & eta)

$$\operatorname{Req}\operatorname{eq}: x^2+x-1=0$$
 (Equation with roots $rac{1}{lpha} \operatorname{and} rac{1}{eta}$)

Question: The total number of 10 digits sequences formed by only {0, 1, 2} where 1 should be used at least 5 times and 2 should be used exactly three times, is

- **Options:** (a) 3250
- **(b)** 3680
- (c) 3480
- **(d)** 3840

Answer (c)

$$egin{array}{l} ^{10}C_3 \, imes \left[^{7}C_5 \, + ^{7}C_6 \, + ^{7}C_7 \,
ight] \ &= \, rac{10 \, imes 9 imes 8}{6} \left[21 + 7 + 1
ight] \ &= 120 \, imes \, 29 \ &= \, 3480 \end{array}$$

Question: Let $a_1, a_2, a_3, ...$ is an A.P. and $\sum_{k=1}^{12} a_{2k-1} = -\frac{72}{5} a_1$ and $\sum_{k=1}^{n} a_{k=0}$. Then the value of n

Options:

- (a) 10
- (b) 13
- (c) 11
- (d) 8

Answer: (c)

$$a_1 + a_3 + a_5 - - + a_{23} = -\frac{72}{5}a_1$$
 $\frac{12}{2} [2a_1 + 11.2d] = -\frac{72}{5}a_1$
 $10a_1 + 110d = -12a_1$
 $22a_1 + 110d = 0$
 $a_1 + 5d = 0$

$$a_1 + 5d = 0$$

$$2a_1 + 10d = 0$$

$$\frac{n}{2}[2a + (n-1)d] = 0$$

$$n = 11$$

Question: Number of solutions in $[-2\pi, 2\pi]$ for equation

$$2\sqrt{2}\cos^2\theta + \left(2 - \sqrt{6}\right)\,\cos\theta - \sqrt{3} = 0.$$

Options:

- (a) 4
- (b) 2
- (c)6
- (d) 8

Answer: (d)

$$2\sqrt{2}c^2+\Bigl(2-\sqrt{6}\Bigr)c-\sqrt{3}=0$$

$$2c\left(\sqrt{2}c+1
ight)-\sqrt{3}\Big(\sqrt{2}c+1\Big)=0$$

$$c=rac{\sqrt{3}}{2},\,rac{-1}{2}$$

Question: Given the equation of a hyperbola $H: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and its directrix is $x = \sqrt{\frac{10}{81}}$ with a focus at ($\sqrt{10.0}$), then find the value of 9(e + l^2), where 1 is length of

latus rectum is **Options:**

- (a) 2697
- (b) 2597
- (c) 2487
- (d) 2587

Answer: (d)

$$\frac{a}{e} = \sqrt{\frac{10}{81}} ae = \sqrt{10}$$

$$a^2 = \frac{10}{9}, \, e^2 = \frac{9}{10} \, = 9$$

$$l=2a\left(e^2-1
ight)\,=2\, imes\,\sqrt{rac{10}{9}}\,(8)$$

$$l^2 = 4 imes rac{10}{9} imes 64$$

$$9(e+l^2) = 9[3 + \frac{2560}{9}] = 2587$$

Question: If a twice differentiable function f satisfies f'(x)=f(x) such that $f(\theta)=\frac{1}{2}f'(\theta)$.

Then find $f''(\frac{\pi}{3})$. Options:

- $\begin{array}{c} {}^{\text{(b)}}\frac{e^{\frac{\pi}{3}}}{2} \\ {}^{\text{(c)}}\frac{\sqrt{3}}{2} \end{array}$
- $\overset{\text{(d)}}{\frac{e^{\frac{2\pi}{3}}}{2}}$

Answer: (b)

$$f\prime(x)=f(x)$$

$$\frac{dy}{dx} = y$$

$$dy = x + c$$

$$y = ke^x$$

$$f(x) = ke^x$$

$$f(0) = k = \frac{1}{2}$$

$$f(x) = e^{\frac{x}{2}}$$

$$egin{align} f(0)&=rac{1}{2}=f\prime(0)\ f\prime\prime(x)&=ke^x\ f\prime\primeig(rac{\pi}{3}ig)&=ke^rac{\pi}{3}\ &=rac{e^rac{\pi}{3}}{2} \ \end{array}$$

Question: Let the system of equations, $3x - y + \beta z = 3$, $2x + \alpha y + z = -3$ and x + y + 4z = 4has infinite solutions, then 22β - 9α equals to

Options:

- (a) 165
- (b) 164
- (c) 163
- (d) 162

$$egin{array}{c|ccc} Answer: (b) \ 3 & -1 & 3 \ 2 & lpha & -3 \ 1 & 1 & 4 \ \end{array} = 0$$

$$3(4\alpha + 3) + 1(11) + 3(2 - \alpha) = 0$$

 $12\alpha + 9 + 11 + 6 - 3\alpha = 0$

$$9\alpha = -26$$

$$egin{bmatrix} 3 & 3 & eta \ 2 & -3 & 1 \ 1 & 4 & 4 \end{bmatrix} = 0$$

$$3(-12-4)-3(7)+eta(11)=0 \ -48-21=-11eta \ rac{-69}{-11}=eta=rac{69}{11}\,,\, 22eta=138 \ 22eta-9lpha \ =138+26 \ =164$$

Question: PQ is focal chord of $y^2 = 4x$ making an angle of 60° with positive x-axis. P lies in first quadrant & S is its focus. Circle with PS as diameter touches y-axis at $(0, \alpha)$, find α^2

Options:

- (a) 1
- (b) 2
- (c) 3
- (d) 4

Answer: (c)

$$\alpha = t$$

$$\tan 60^{\circ} = \frac{t-0}{\frac{t^2+1}{2}-1} = \frac{2t}{t^2-1} = \sqrt{3}$$

$$2t = \sqrt{3}t^2 - \sqrt{3}$$

$$\sqrt{3}t^2 - 2t - \sqrt{3} = 0$$

$$\left(t - \sqrt{3}\right) \left(\sqrt{3}\,t + 1\right) = 0$$

$$t=\sqrt{3}$$

$$\alpha = \sqrt{3}$$

$$lpha^2=3$$

Question: If $y \ge |4 - x^2|$, $y \le x^2$, $y \le 4$, x > 0, then find the area bounded by inequalities.

Answer: $(\frac{40\sqrt{2}}{3} - 16)$

Vedantu

$$\begin{split} A &= \int_{\sqrt{2}}^2 x^2 - \left(4 - x^2\right) dx + \int_2^{3\sqrt{2}} \left(4 - \left(x^2 - 4\right)\right) dx \\ &= \int 2x^2 - 4 \, dx \, + \, \int 8 - x^2 dx \\ &= \left. \frac{2x^3}{3} - 4x \right|_{\sqrt{2}}^2 + \, 8x - \frac{x^3}{3} \right|_2^{2\sqrt{2}} \\ &= \left(\frac{16}{3} - \frac{4\sqrt{2}}{3}\right) - 4\left(2 - \sqrt{2}\right) + \left(16\sqrt{2} - 16\right) - \left(\frac{16\sqrt{2} - 8}{3}\right) \\ &= \frac{16}{3} - 8 - 16 + \frac{8}{3} + 4\sqrt{2} - \frac{4\sqrt{2}}{3} + 16\sqrt{2} - \frac{16\sqrt{2}}{3} \\ &= \left(\frac{40\sqrt{2}}{3} - 16\right) \end{split}$$

Question: Let $f(x) = 2x^3 + 9x^2a + 12a^2x + 1$. Local minima and local maxima occur at p & q respectively, such that $p^2 = q$. Then the value of f(3) is Options:

(b)
$$35$$

Answer: (d)

$$6x^2 + 18ax + 12a^2$$

$$=6\left[x^{2}+3ax+2a^{2}
ight] =0$$

$$x=-a, -2a$$

$$a < 0 \quad 4a^2 = -a$$

$$a = -\frac{1}{4}$$

$$f(3) = 54 + 81 \, a + 36a^2 + 1$$

$$55 - \frac{81}{4} + \frac{9}{4} = 55 - 18 = 37$$

Vedanti

Question: If $\int_0^{e^3} \left[\frac{1}{e^{x-1}} \right] dx = a - \log_e 2$, where [.] is Greatest integer function, then α^3 equals to

Options:

(a) 4

(b) 6

(c) 8

(d) 10

Answer: (c)

$$\int_{0}^{e^{3}} \left[\frac{1}{e^{x-1}} \right] dx$$

$$\int_{0}^{1-\ell nx} 2 dx + \int_{1-\ell nx}^{1} 1 dx$$

$$= 2(1 - \ln 2) + (\ln 2)$$

$$= 2 - \ln 2$$

$$\alpha = 2 \alpha^{3} = 8$$

Question: If
$$\lim_{x\to 0} \frac{(\gamma-1)e^{x^2}+x^2\sin(\alpha x)}{\sin(2x)-\beta x}=3$$
, then $\alpha+2\beta+\gamma$ is equal to Options:

- (a) 0
- (b) 1
- (c) 3
- (d) 5

Answer: (b)

$$\lim_{x o 0}rac{(\gamma-1)e^{x^2}+x^2\sin(lpha x)}{\sin(2x)-eta x}=3$$

$$ightarrow \lim_{x
ightarrow 0} rac{lpha x^3}{\sin 2x - eta x} = 3 \hspace{0.5cm} \gamma = 1$$

$$ightarrow \; rac{3lpha x^3}{2\cos2x-eta} = 3 \;\;\;\; eta = 2$$

$$\frac{6\alpha x^2}{-4\sin 2x} = \frac{6\alpha}{-8} = 3 \rightarrow \alpha = -4$$

$$\alpha + 2\beta + \gamma = -4 + 4 + \gamma = 1$$

Question: The term independent of x in the binomial expression of

$$\left(rac{x+1}{x^{rac{2}{3}}-x^{rac{1}{3}}+1}-rac{x-1}{x-x^{rac{1}{2}}}
ight)^{10}$$
 is

Options:

- (a) 120
- (b) 210
- (c) 84
- (d) 110

Answer: (b)

Term Independent at x

$$\begin{bmatrix} \frac{x+1}{\left(x^{\frac{1}{3}+1-x^{\frac{1}{3}}\right)} - \frac{x-1}{x-x^{\frac{1}{2}}} \end{bmatrix}^{10}$$

$$(x+1) = \left(x^{\frac{1}{3}}+1\right)\left(x^{\frac{2}{3}}+1-x^{\frac{1}{3}}\right)$$

$$\left(x^{\frac{1}{3}}+1\right) - \frac{(\sqrt{x}+1)(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}-1)}$$

$$\left(x^{\frac{1}{3}}-x^{\frac{1}{2}}\right)^{10}$$

$$(x^{\frac{1}{3}}-x^{\frac{1}{2}})^{10-r} \cdot \left(-x^{\frac{1}{3}}\right)^{r}$$

$$= \frac{10-r}{3} - \frac{r}{2} = 0$$

$$20 - 2r = 3r$$

$$4 = r$$

Question: Let E be an ellipse such that $E: \frac{x^2}{18} + \frac{y^2}{9} = 1$. Let point P lies on E such that S and S' are foci of ellipse. Then find the sum of min (PS.PS') + max (PS.PS') Options:

(a) 18

 $^{10}C_4 = 210$

(b) 36

(c) 9 (d) 27 Answer: (d) $\min(PS. PSI) + \max(PS. PSI)$ $PS. PSI = (a^2 - x^2e^2)$ $= (a^2 - x^2e^2) + a^2$ $= 2a^2 - e^2a^2$ $= 18(2 - e^2) = 18(2 - \frac{1}{2}) = 27$

