

JEE MAIN 3 APRIL 2025 SHIFT 2

MATHEMATICS QUESTION PAPER WITH ANSWER KEY

Q.N o.	Question	Answers
1	If $\lim_{x\to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}} = p$, then 96 $\ln p$ is	32
2	Let A = $\{-3, -2, -1, 0, 1, 2, 3\}$. A relation R is defined such that xRy if y = max $\{x, 1\}$. Number of elements required to make it reflexive is I, number of elements required to make it symmetric as m and number of elements in the relation R is n. Then value of I + m + n is equal to	15
3	Let a circle C with radius r passes through four distinct points (0,0), (k, 3k), (2, 3), and (-1, 5), such that $k \ne 0$, then (10k + 2r ²) is equal to	3. 27
4	$I = \int_0^{\pi} \frac{8x}{4\cos^2 x + \sin^2 x} dx$ equals to	3. 2π²
5	$S = 1 + \frac{1+3}{1!} + \frac{1+3+5}{2!} + \dots \infty$. The value of S is equal to	3. 5e
6	Let y = f(x) be the solution of the differential equation $\frac{dy}{dx} + 3ytan^2x + 3y = sec^2x$ such that $f(0) = \frac{e^3}{3} + 1$, then is equal to	$\frac{2}{3}(1+\frac{1}{E^3})$
7	Area bounded by $ x-y \le y \le 4\sqrt{x}$ is equal to (in square units)	2. 1024/3
8	If $(1+x+x^2)^{10} = 1+a_1x+a_2x^2+$, then $(a_1+a_3+a_5+a_{19})-11a_2$ equals to	28919
9	Let $A(z_1)$, $B(z_2)$ and $C(z_3)$ are the vertices of an equilateral triangle. If z_0 is the centroid of triangle ABC and $ z_1-z_2 =1$, then the value of $\sum_{i=1}^3 z_1-z_0 ^2$ equal to	
10	If $f(x) = x+2 - 2 x $, then number of points of local maxima and local minima is	2. 3
11	x(x-2)(12-k) = 2 has both roots same. The distance of $(k, k/2)$ from the line $3x + 4y + 5 = 0$ is	3. 15

12	The shortest distance between the parabola $y^2 = 8x$ and the circle $x^2 + y^2 + 12y + 35 = 0$	1. $(2\sqrt{2}-1)$
13	Let $f(x) = \log_4(1 - \log_7(x^2 - 9x + 8))$. If the domain of $f(x)$ is $(\alpha, \beta) \cup (\gamma, \delta)$. Then $\alpha + \beta + \gamma + \delta$ equals to	1. 18
14	If the coordinates of foci of a hyperbola $3x2-y2-\alpha x+\beta y+\gamma=0$ are $(4,2)$ and $(8,2)$. Then $(\alpha+\beta+\gamma)$ is equal to	4. 141
15	Let the probability distribution is defined for a random variable x as p (x)=k (1-3 $^{-1}$ x) for x = 0, 1, 2, 3. Then P (x \geq 2) is:	2. 25/34
16	If the mean and variance of a data $x_1 = 1$, $x_2 = 4$, $x_3 = a$, $x_4 = 7$, $x_5 = b$ 10 respectively. If new data is $r + x_r$, $r \in \{1, 2, 3, 4, 5\}$, then the new va	3. 20.4
17	Let 9 points lie on the line $y = 2x$ and 12 points on the line $y = x/2$ in the first quadrant. Find the number of triangles formed using these points and origin.	1. 1134

CollegeDekho