

JEE MAIN 3 APRIL 2025 SHIFT 2

PHYSICS QUESTION PAPER WITH ANSWER KEY

Q.No.	Questions	Answers
1	The ratio of intensities of two coherent is 1:9. The ratio of the maximum to the minimum intensities is	4:1
2	Excess pressure inside bubble A is half of that of bubble B. Find the ratio of volume of bubble A to bubble B.	8
3	In a resonance tube experiment at one end, resonance is obtained at two consecutive lengths $/_1$ = 100 cm and $/_2$ = 140 cm. If the frequency of the sound is 400 Hz, the velocity of sound is	320 m/s
4	Physical quantity S is given as $S = pq/r^3\sqrt{t}$ Find to percentage change in S if percentage change in p, q, r and t are 1, 1, 3 and 2, respectively.	12%
5 D	In a medium of refractive index 2, the frequency of light is 5×10^{14} Hz, the wavelength of the light is	300 nm
6	A capacitor $C_1 = 100 \text{ pF}$ is connected to a 60 V cell and then disconnected. C_1 is now connected to an unchanged capacitor C_2 such that the final potential across C_1 becomes 20 V. Find C_2 .	200 nm
7	A bulb rated 100 W, 220 V connected to an ac supply of 220 V. Find the peak current in the bulb.	0.64 A

8	 Statement-l: O²⁻ and H⁺ are projected in a magnetic field perpendicular to the field with same speed. The radius of curvature of O²⁻ will be less than H⁺. Statement-ll: e⁻ and p⁺ are projected in a magnetic field perpendicular to the field with same speed. The radius of curvature of e⁻ will be more the proton. 	Both statement-l and statement-ll are incorrect
9	The pressure of an ideal gas is increased by 0.4% keeping the volume constant. Find the initial temperature of the gas if there is a 1°C rise in temperature.	250 K
10 11 D	In two situations given in figures (i) and (ii) current through R is l_1 and l_2 , respectively. If $E_1 = 2 V$, $r_1 = 1 \Omega$, $E_2 = 1 V$, $r_2 = 2 \Omega$, $R = 6 \Omega$ then find l_1 / l_2 . $\begin{bmatrix} E_1 & r_1 & E_2 & r_2 \\ I & I & I \\ I & R \\ (i) \end{bmatrix}$ (ii) (iii) (ii	4/3 0.1 m ieve
12	The torque experienced by a magnetic dipole in a uniform magnetic field is $80\sqrt{3}$ N.m. If the angle between the magnetic moment and the magnetic field is 60° , the potential energy of the dipole is	-80 J

13	The truth-table of the circuit shown is $A = \frac{\gamma}{B}$	A B Y 0 0 0 0 1 0 1 0 1 1 1 1
14	Match the following:	(i)-(b), (ii)-(c),
	(i)Boltzmann's constant(a)ML2T-1(ii)Coefficient of viscosity(b)ML2T-2K-1(iii)Thermal conductivity(c)ML^-1T-1(iv)Plank's constant(d)MLT-3K-1	(iii)-(d), (iv)-(a)
15 C	Find the distance of the object from the left surface, if the distance of the final image from the left surface is 200 cm.	100 cm
¹⁶ D	The displacement of a particle is given as $x = C_0(t^2 - z) + C(t - z)^2$, where t is time in seconds and C_0 and C are constants the acceleration of the particle is	$2(C_0 + C)$
17	In a Hydrogen atom, an electron makes a transition from n th orbit to 4 th excited state. Energy released in this transition 0.33 eV, find the value of n.	8
18	A block of mass 1 kg moves from $x = 0.1$ m to $x = 1.9$ m. The speed of block at $x = 0.1$ is 10 m/s. A resistive force $F = -10x$ acts or the block. Find speed of block (in m/s) when it is at $x = 1.9$ m.	8

19	A projectile is fired with an initial velocity u, such that range of the projectile is 3 times the maximum height. If the range of the projectile is $Nu^2/25g$, Find value of N.	24
20	A solid ball of diameter 3.6 mm and having density 7825 kg/m ³ . This ball has terminal velocity 2.56×10^{-2} m/s in a liquid of density 925 kg/m ³ . Find coefficient (in pascal sec) of viscosity.	1.9

