

JEE-Main-02-04-2025 (Memory Based) [EVENING SHIFT] Chemistry

Question: Correct order		pelow elements	
(a) $1s^2 2s^2 2p^3$	(b) $1s^22s^22p^4$		
(c) $1s^22s^22p^5$	(d) $1s^22s^22p^5$		
Options:			
(a) $a > b > c > d$			
(b) $c > b > a > d$			
(c) $d > c > b > a$			
(d) $c > b > d > a$			
Answer: (b)			
· · ·			
Question: Nature of comp	pounds TeO2 and TeH2 i	is and respectively	
Options:			
(a) Oxidising and Reducing	g respectively		
(b) Highly acidic and highl	· ·		
(c) Reducing and Basic res			
(d) Basic and oxidising			
Answer: (a)			
Ouestion: In 3, 3-dimeth	vlhex-1-en-4-yne, the ni	um <mark>ber of sp, sp² and sp³ carb</mark> on atoms	S.
respectively are	janon z on . jano, one no	and of sp, sp and sp care on atoms	-,
Options:			
(a) 2, 2, 4			
(b) 2, 2, 2			
(c) 1, 2, 2			
(d) 2, 4, 2			
Answer: (a)			
rinswer. (a)			
Question: Statement-I: N	Melting point of neonen	tane is greater than that of n-pentane.	
Statement-II: Neopentan			•
Options:	e give only one mono-su	ibstituteu product	
(a) Both S-I and S-II are co	orrect		
(b) Both S-I and S-II are in			
(c) S-I is incorrect but S-II			
(d) S-I is correct but S-II is			
Answer: (a)	, mediteet		
Answei. (a)			
Question: Sadium nitron	russide test is used for d	detection of which of the following	
species in organic compo		acception of which of the following	
species in organic compo	นแนง		

Options:(a) SO₄²⁻
(b) S²⁻

(c) Na⁺ (d) PO₄³⁻

Answer: (b)

Question: Which of the following is the correct order of enthalpy of atomisation of 3d-series?

Options:

(a) NI > Cu > Mn > Zn

(b) Zn > Cu > Mn > Ni

(c) Cu > Mn > Ni > Zn

(d) Mn > Ni > Cu > Zn

Answer: (a)

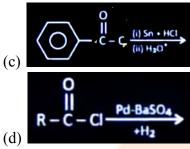
Element		Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn
Atomic number		21	22	23	24	25	26	27	28	29	30
Electronic config	furation										
	М	$3d^14s^2$	$3d^24s^2$	$3d^34s^2$	3d54s1	$3d^54s^2$	$3d^64s^2$	$3d^74s^2$	$3d^{8}4s^{2}$	$3d^{10}4s^{1}$	3d104s
	M'	3d14s1	$3d^24s^1$	$3d^34s^1$	3d ⁵	$3d^54s^1$	$3d^64s^1$	$3d^74s^1$	$3d^{8}4s^{1}$	$3d^{10}$	$3d^{10}43$
	M2+	3d1	$3d^3$	$3d^3$	$3d^4$	$3d^5$	$3d^6$	$3d^7$	$3d^a$	$3d^9$	$3d^{10}$
	M^{3+}	[Ar]	$3d^1$	3d2	$3d^3$	$3d^4$	$3d^6$	$3d^6$	$3d^7$		
Enthalpy of ato	misation,	$\Delta_{u}H^{\theta}/\mathbf{k}J$	mol-1								
		326	473	515	397	281	416	425	430	339	126
lonisation entha	lpy/Δ _t H°/	kJ mol									
$\Delta_i H^{\circ}$	I	631	656	650	653	717	762	758	736	745	90€
$\Delta_1 H^{\odot}$	п	1235	1309	1414	1592	1509	1561	1644	1752	1958	173
$\Delta_i H^{\circ}$	III	2393	2657	2833	2990	3260	2962	3243	3402	3556	383
Metallic/ionic	M	164	147	135	129	137	126	125	125	128	137
radii/pm	M2+			79	82	82	77	74	70	73	75
	M3+	73	67	64	62	65	65	61	60		
Standard											
electrode	M^{2+}/M		-1.63	-1.18	-0.90	-1.18	-0.44	-0.28	-0.25	+0.34	-0.7
potential E /V	M^{3+}/M^{2+}		-0.37	-0.26	-0.41	+1.57	+0.77	+1.97			
Density/g cm ⁻³		3.43	4.1	6.07	7.19	7.21	7.8	8.7	8.9	8.9	7.1

Ouestion: Match the column

Question: Match the column			
Column-I	Column-II		
(P) Finkelstein Reaction	(I) Co+HCI		
(Q) Lucas Reaction	$(II) \begin{array}{c} R - X \xrightarrow{\text{Na}} \\ \text{ether} \end{array}$		
(R) Wurtz Reaction	OH HCl → ZnCl₂		
(S) Gattermannkoach reaction	$CH_3 - CH_2Cl \frac{Nal}{acetone}$		

Options:

- (a) P-IV, Q-III, R-II, S-I
- (b) P-I, Q-II, R-III, S-IV



(c) P-II, Q-III, R-I, S-IV (d) P-I, Q-II, R-I, S-IV

Answer: (a)

Question: Which of the following reactions given carboxylic acid Options:

- (a) $RCN \rightarrow H^+/H_2O$
- (b) $RCH_2OH \rightarrow^{PCC}$

Answer: (a)

Question: In adiabatic process, the magnitude of work done in case of one step & ∞ step follows order:

Options:

- (a) $|W_{rev}|_{expansion} > |W_{irr}|_{expansion}$
- (b) $|W_{rev}|_{expansion} \le |W_{irrev}|_{expansion}$
- (c) $|W_{rev}|_{expansion} = |W_{irrev}|_{expansion}$
- (d) Can't be predicted

Answer: (a)

Question: The four different amino acids are given, A, B, C and D. Calculate the number of tetrapeptides formed including all the four amino acids Options:

- (a) 8
- (b) 16
- (c) 24
- (d) 32

Answer: (c)

Ouestion: Match the column

Column-I	Column-II
(P) fractional Distillation	(I) diesel. + petrol
(Q) Simple Distillation	(II) aniline + H ₂ O
(R) under. Reduce,P Distillation	(III) aniline + CHCl ₃
(S) Steam Distillation	(IV) Glycerol pentyl

Options:

(a) P-I; Q-III; R-IV; S-II

(b) P-II; Q-II; R-III; S-II

(c) P-III; Q-II; R-IV; S-I

(d) P-I; Q-II; R-III; S-IV

Answer: (a)

Question: Among the following molecules which one has sp³d hybridization having lone pair and having different bond length:

XeF₂, XeF₄, PF₅, SF₄

Options:

- (a) XeF₂
- (b) XeF₄
- (c) PF₅
- (d) SF_4

Answer: (d)

Question: For the reversible reaction A(g) = B(g) + C(g). The degree of dissociation is α at pressure P_T , then

Options:

(a) If $P_T >> K_P$, then $a \approx 1$

(b) If P_T increases, then α decreases

(c) If P_T increases, then α increases

(d) If $K_P \gg P_T$, then α tend to 0

Answer: (b)

Question: The number of unpaired electrons and hybridisation of [Mn(CN)₆]³-, respectively are:-

Options:

(a) 4 and $d^2 sp^3$

(b) 4 and sp^3d^2

(c) 2 and d^2sp^3

(d) 2 and sp^3d^2

Answer: (c)

Question: Consider the following statements

(A) Value of l gives shape of orbital

(B) Y represent wave function of an electron

(c) Electron density of p_x orbital in xy plane is zero

(D) $2p_x$ orbital is

The correct statement(s) are

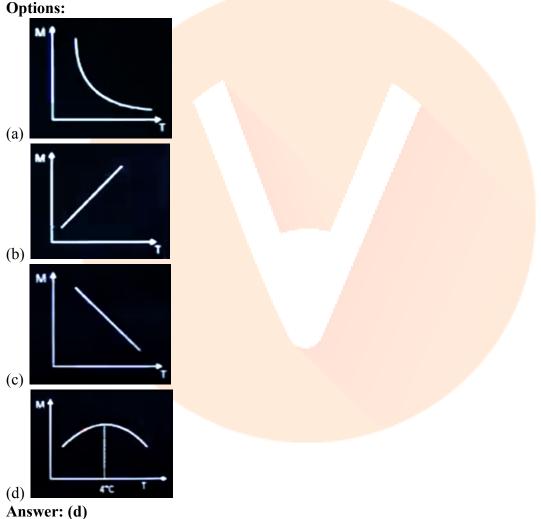
Options:

(a) (A) and (D) only

(b) (A), (C) and (D) only

(c) (A), (B) and (D) only

(d) (A), (B), (C) and (D) only


Answer: (c)

Question: The d-orbital electronic configuration of the complex among $[\text{Co(en)}_3]^{3+}$, $[\text{Co(F)}_6]^{3-}$, $[\text{Mn(H}_2\text{O)}_6]^{2+}$ and $[\text{Zn(H}_2\text{O)}_6]^2$ that has highest CFSE is **Options:**

- (a) t_{2g}³ eg² (b) t_{2g}⁶ eg⁴ (c) t_{2g}⁶ eg⁰ (d) t_{2g}⁴ eg²

Answer: (c)

Question: 1 M NaCl solution is prepared at 0°C in H₂O. Now it is heated, then find correct graph between molarity and temperature

Question: Concentration Vs-time graph for first order reaction is given Find out time required for concentration to become 2.5 M (in min) (Nearest integer) **Options:**

Answer: (65)

Question: If the percentage w/v for NaOH is 0.2 and resistivity is 870 milliohm metre. Then, calculate Λm (in S cm² mol⁻¹)

Options:

Answer: (23)

Question: 0.5~g organic compound is heated with CuO in a CO_2 atmosphere at 300 K. The volume of N_2 gas collected over H_2O is 60 mL, if aqueous tension is 15 mm Hg at 300 K and pressure recorded is 715 mmHg, then calculate percentage of nitrogen in organic compound

Answer: (13%)

