

JEE-Main-02-04-2025 (Memory Based) [EVENING SHIFT] **Maths**

Question: Total number of terms in an A.P are even. Sum of odd terms is 24 and sum of even terms is 30. Last term exceeds the first term by $\frac{21}{2}$. Find the total number of terms.

Answer: (8)

Answer: (8)
$$t_1 + t_3 + \dots t_{2n-1} = 24$$

$$t_2 + t_4 + \dots t_{2n} = 30$$

$$\frac{n}{2} [2a + (n-1)2d] = 2 \dots \to (1)$$

$$\frac{n}{2} [2(a+d) + (n-1)2d] = 30 \dots \to (2)$$

$$2a + (n-1) \cdot \frac{21}{2n-1} = \frac{24 \times 2}{n}$$

$$2a + n \cdot \frac{21}{2n-1} = \frac{30 \times 2}{n}$$

$$\frac{21}{2n-1} = \frac{60-98}{n} = \frac{12}{n}$$

$$7n = 8n - 4$$

$$t_{2n} = t_1 + \frac{21}{2}$$

$$t_{2n} = t_1 + \frac{21}{2}$$

$$a + (2n - 1)d = a + \frac{21}{2}$$

$$(2n-1)d = \frac{21}{2}$$

$$d=rac{21}{2(2n-1)}
ightarrow (3)$$

No of terms = 8

Question: If the domain of the function is (a, b) then

$$f(x)=rac{1}{\sqrt{3x+10-x^2}}+rac{1}{\sqrt{x+|x|}}$$
 (1+ a)2+ b2 is equal to

Options:

- (a) 25
- (b) 16
- (c) 24
- (d) 26

Answer: (d)

$$f(x)=rac{1}{\sqrt{3x+10-x^2}}+rac{1}{\sqrt{x+|x|}} ext{ is } (a,b) \ 3x+10-x^2>0 \qquad x+|x|>0 \ x^2-3x-10<0 \qquad |x|>-x \ (x-5)(x+2)<0 \qquad x\in R^+ \ -2< x<5 \ x\in (0,5) \ a=0, \ b=5 \ (1+a)^2+b^2=1+25=26.$$

$$(1+a)^2 + b^2 = 1 + 25 = 26.$$

 $heta\in\left[-rac{7\pi}{6},rac{4\pi}{3}
ight], rac{ ext{then number of solutions}}{ ext{then number of solutions}} ext{ of } \sqrt{3} \operatorname{cosec}^2 heta$ -2($\sqrt{3}$ -1)cosec **Question: If** θ - 4 = 0, is

Answer: (6)

$$\sqrt{3}\cos ec^2\theta - 2\left(\sqrt{3} - 1\right)\cos ec\theta - 4 = 0$$

Let's assume $c = \cos ec \theta$

$$\sqrt{3}c^2 - 2(\sqrt{3} - 1)c - 4 = 0$$

$$\Rightarrow \sqrt{3}c^2 - 2\sqrt{3}c + 2c - 4 = 0$$

$$\Rightarrow \sqrt{3}c\left(c-\frac{2}{2}\right) + 2(c-2) = 0$$

$$c = 2, \ c = -\frac{2}{\sqrt{3}}$$

no. of solution = 6

Question: If
$$\frac{dy}{dx} + 2y\sec^2x = 2\sec^2x + 3\tan x$$
. \sec^2x and $f(0) = \frac{5}{4}$.

Then the value of $^{12\left(y\left(\frac{\pi}{4}\right)-\frac{1}{e^2}\right)}$ equals to **Answer: (21)**

Question:
$$\lim_{x\to 0} \frac{\cos(2x) + a\cos(4x) - b}{x^4}$$
 is finite, then $a + b =$

Answer: (½)

$$\lim_{n \to 0} \frac{\cos 2n + a \cos(4n) - b}{x^4}$$

$$\frac{\left(1 - \frac{(2x)^2}{2!} + \frac{(2n)^4}{4!} \dots \right) + a\left(1 - \frac{(4x)^2}{2!} + \frac{(4x)^4}{4!}\right) - 4}{x^4}$$

$$\frac{(1 + a - b) + x^2(-2 - 8a) + x^4(\frac{2}{3} + \frac{32}{3}a)}{x^4}$$

$$1 + a - y = 0$$

$$1 - \frac{1}{4} - 4 = 0$$

$$-2 - 8a = 0$$

$$\Rightarrow a = \frac{-1}{4}$$

$$b = \frac{3}{4}$$

$$a + 4 = \frac{3}{4} - \frac{1}{4}$$

$$= \frac{1}{2}$$

Question: Evaluate
$$\int_{-2}^{2} \frac{9x^2}{1+5^x} dx$$
Options:

Options:

(b)
$$24$$

Answer: (b)

$$I=\int\limits_{-2}^2rac{9x^2}{1+5^x}dx$$

$$I=\int\limits_{-2}^{2}rac{9(-x)^{2}}{1+5^{-x}}dx$$

$$I = \int\limits_{-2}^{2} (5^x) rac{9x^2}{1+5^x} dx$$

$$2I = \int\limits_{-2}^{2} rac{9x^2}{(1+5^x)} (1+5^x) \, dx$$

$$2I=2.9\int\limits_0^2x^2dx$$

$$I=39{\left(rac{x^3}{3}
ight)}_0^2$$

$$=3(8-0)$$
 $I=24$

Question: Find the eccentricity of ellipse in which length of minor axis is equal to one fourth of the distance between foci **Options:**

(a)
$$\frac{4}{\sqrt{17}}$$
(b) $\frac{2}{\sqrt{17}}$
(c) $\frac{7}{\sqrt{17}}$

(b)
$$\sqrt{17}$$

(c)
$$\sqrt{17}$$

$$\frac{8}{(d)} \frac{8}{\sqrt{17}}$$
Answer: (a)

Question: If the mean and variance of eight observations a, b, 8, 12, 10, 6, 4, 15, is 9 and 9.25 respectively. Then a+b+ab is equal to

Options:

- (a) 76
- (b) 83
- (c) 79
- (d) 93

Answer: (d)

Question: If two vectors \overrightarrow{a} and \overrightarrow{b} is given by $\overrightarrow{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\overrightarrow{b} = \hat{i} + 4\hat{j} + 8\hat{k}$ and the vectors \overrightarrow{c} and \overrightarrow{d} are related as $(\overrightarrow{a} - \overrightarrow{c}) \times \overrightarrow{b} = 5\hat{i} - 2\hat{j} + 3\hat{k}$ and $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{d}$.

Then $|\overrightarrow{a}.\overrightarrow{d}|$ is equal to

Options:

- (a) 12
- (b) 8
- (c) 10
- (d) 7

Answer: (c)

Question: Parabola $y^2 = 16x$ and point (1, -4) lies on the focal chord. Find the ratio in which focus divides the focal chord.

Answer: (4:1)

Question: In how many ways A, B, C, D, E has to be arranged such that no row is empty.

Answer: (5760)

Question: If the system of equations

$$2x + \lambda y + 3z = 5$$

$$3x + 2y - z = 7$$

 $4x + 5y + \mu z = 9$ has infinitely many solutions, then

 $(\lambda^2 + \mu^2)$ is equal to

Options:

- (a) 22
- (b) 18
- (c) 26
- (d) 30

Answer: (c)

Question: If $y=\cos\Bigl(\frac{\pi}{3}+\cos^{-1}\Bigl(\frac{x}{2}\Bigr)\Bigr),$ then which of the following is true. **Options:**

(a)
$$x^2 - 2xy + 8y^2 = 2$$

(b) $x^2 - 2xy + 4y^2 = 3$
(c) $x^2 - 3xy + 4y^2 = 3$
(d) $x^2 - 5xy + 4y^2 = 8$
Answer: (b)

(b)
$$x^2 - 2xy + 4y^2 = 3$$

(c)
$$x^2 - 3xy + 4y^2 = 3$$

(d)
$$x^2 - 5xy + 4y^2 = 8$$

Question: A variable line intersect co-ordinate axis at B & C such that area of triangle equal to 48. Find minimum value of $OB^2 + OC^2 = ?$ **Answer: (192)**