

JEE-Main-04-04-2025 (Memory Based) [MORNING SHIFT] Physics

Question: Find the equivalent capacitance between A and B, where $C = 16 \mu F$

Options:

- (a) 48 μF
- (b) $8 \mu F$
- (c) $32 \mu F$
- (d) 16 μF

Answer: (c)

Question: A ring and a solid sphere released from rest from same height on enough

rough inclined surface. Ratio of their speed when they reach at bottom is $\sqrt{\frac{7}{x}}$ m/s, then x is

Options:

- (a) 20
- (b) 15
- (c) 10
- (d) 25

Answer: (c)

Question: Means free path for an ideal gas is to be observed 20 μm while average speed of molecules of gas is observed to be 600 m/s, then frequency of collision is nearby Options:

- (a) 4×10^7
- (b) 1.2×10^7
- (c) 3×10^7
- (d) 2×10^{-7}

Answer (c)

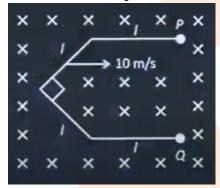
Question: Find the dimension of B where, E represents electric field and B represents

magnetic field **Options:**

(a) ML^2T^{-1}

(b) LT⁻¹

(c) L^2T^{-1}


(d) LT⁻²

Answer: (b)

Question: 4 rods of equal length are joined as shown in the figure. Combined system is

moving with speed 10 m/s in a perpendicular magnetic field of $\sqrt{2}$ tesla. Find emf induced between point P and Q (l = 10) cm.

 \mathbf{E}

Options:

- (a) 1 volt
- (b) 0.1 volt
- (c) 2 volt
- (d) $\sqrt{2}$ volt

Answer: (a)

Question: A real object placed in front of a spherical mirror forms an image whose

magnification is 3 If the distance between the image and object is 3 cm. The focal length of the mirror is ____ cm.

Options:

- (a) -11.25 cm
- (b) -22.5 cm
- (c) -45 cm
- (d) -60 cm

Answer: (a)

Question: The current in a AC circuit is given as $i = 100\sqrt{2} \sin(100\pi t)A$. Find rms current and frequency is Hertz.

- (a) 100 A, 100 Hz
- (b) 50 A, 100 Hz

(c) 200 A, 50 Hz

(d) 100 A, 50 Hz Answer: (d)

Question: For a magnification of $\frac{1}{2}$, object is a 40 cm from the mirror. What should be

the object distance for $m = \frac{1}{3}$

Options:

- (a) 80 cm
- (b) -80 cm
- (c) 40 cm
- (d) -40 cm

Answer: (b)

Question: There is a closed organ pipe having a certain fundamental frequency. Find the percentage change in fundamental frequency when it is filled one fifth with water. **Options:**

- (a) 100 %
- (b) 200 %
- (c) 300 %
- (d) 400 %

Answer: (d)

Question: An electric dipole with charges 2 µC and a separation 20 cm is placed close to an infinitely charged non-conducting sheet with surface charge density 100 C/m². Find the torque acting on the dipole if the dipole makes an angle 30° with the normal to the sheet.

Options:

$$\frac{12}{\varepsilon_0} \times 10^{-5} \text{ N} - \text{m}$$

$$\frac{2}{\varepsilon_0} \times 10^{-5} \text{ N} - \text{m}$$
(b)

$$\frac{4}{\varepsilon_0} \times 10^{-5} \text{ N} - \text{m}$$

$$\frac{1}{\varepsilon_0} \times 10^{-5} \,\mathrm{N} - \mathrm{m}$$
(d) $\frac{1}{\varepsilon_0}$

Answer: (d)

Question: The dimensional formula for the ratio of Electric flux & magnetic flux is $\left[M^aL^bT^cA^d\right]$

(a)
$$a = 1$$
, $b = 2$, $c = -1$, $d = 1$

(b)
$$a = 2$$
, $b = -1$, $c = 1$, $d = -1$

(c)
$$a = 0$$
, $b = 1$, $c = -1$, $d = 0$

(d)
$$a = 1$$
, $b = 3$, $c = -2$, $d = 1$

Answer: (c)

Question: Assertion (A): The minimum kinetic energy required to take a body of mass m from surface of earth to infinity is mgR.

Reason (R): Potential energy at surface of earth is zero.

Options:

- (a) (A) and (R) both are correct and (R) is correct explanation of (A)
- (b) (A) and (R) both are correct and (R) is not correct explanation of (A)
- (c) (A) is correct but (R) is incorrect
- (d) (A) is incorrect but (R) is correct

Answer: (c)

Question: Longitudinal sound waves travel in three different gases namely helium, methane and carbon dioxide. Mean temperature of three gases are equal then ratio of speeds of wave in 3 gases respectively is Options:

(a)
$$\sqrt{5}:\sqrt{7}:\frac{1}{\sqrt{11}}$$

(b)
$$\sqrt{3}:\sqrt{5}:\frac{1}{\sqrt{11}}$$

(c)
$$\sqrt{5}:1:\sqrt{\frac{21}{55}}$$

$$\frac{1}{(d)} \cdot \frac{1}{\sqrt{3}} : \frac{1}{\sqrt{5}} : \frac{1}{2}$$

Answer: (c)

Question: Correct relation for Torque

$$(1)y = r \times \overline{F}$$

$$(2)y = \frac{d}{dt}(\bar{r} \times \bar{P})$$

$$(3)y = \overline{r} \times \frac{d\overline{P}}{dt}$$

$$(4)y = (r \times v)$$

$$(5)y = r \times \overline{\omega}$$

Options:

(a)
$$1, 2, 3$$

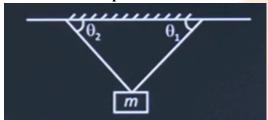
Answer: (a)

Question: Assertion: In photoelectric effect, if intensity of monochromatic light is increased then stopping potential increases.

Reason: Increased intensity results in increment of photocurrent.

Options:

(a) A is correct, R is correct and R is explanation of A


(b) A is correct, R is correct and R is not explanation of A

(c) A is incorrect and R is correct

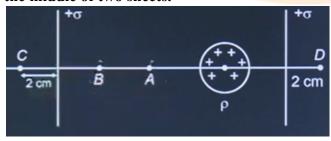
(d) A is correct and R is incorrect

Answer: (c)

Question: A block of mass m kg is connected to two strings as shown. If $T_1 = \sqrt{3}T_2$, then choose correct option

Options:

(a)
$$\theta_1 = 60^\circ, \theta_2 = 30^\circ, T_1 = \frac{mg}{2}$$


(b)
$$\theta_1 = 60^{\circ}, \theta_2 = 30^{\circ}, T_2 = \frac{mg}{2}$$

(c)
$$\theta_1 = 30^\circ, \theta_2 = 60^\circ, T_1 = \frac{3mg}{4}$$

(d)
$$\theta_1 = 30^\circ, \theta_2 = 60^\circ, T_2 = \frac{3mg}{4}$$

Answer: (b)

Question: In arrangement shown, has two non-conducting plane sheets with charge density σ , and a non-conducting sphere with volume charge density ρ . Choose the correct relation between the magnitude of electric fields at A, B, C and D. Point A is at the middle of two sheets.

(a)
$$E_A = E_B, E_C \neq E_D$$

(b)
$$E_A > E_B, E_C \neq E_D$$

(c)
$$E_A > E_B, E_C = E_D$$

(d)
$$E_A \neq E_B, E_C = E_D$$

Answer: (b)

Question: In YDSE setup, distance between slits d = 0.2 mm. If d is changed to 0.4 mm, then % change in fringe width

Options:

- (a) 25%
- (b) 50%
- (c) 100%
- (d) 75%

Answer: (b)

Question: Two simple pendulums with amplitudes θ_1 and θ_2 have length of strings as l_1 and l_2 respectively. Choose the correct options if the maximum angular accelerations are same.

Options:

- (a) $\theta_1 l_1 = \theta_2 l_2$
- (b) $\theta_1 l_2 = \theta_2 l_1$
- (c) $\theta_1 l_1^2 = \theta_2 l_2^2$
- (d) $\theta_1 l_2^2 = \theta_2 l_1^2$

Answer: (b)

Question: The Boolean expression $Y = A\overline{B}C + \overline{A}\overline{C}$ can be realised with which of the following gate configurations

Options:

- (a) One-3 input AND gate, 3 NOT gate and one -2 input OR gate, one-2 input AND gate
- (b) One-3 input OR gate, 1 NOT gate and one -2 input NOR gate, one-2 input OR gate
- (c) 3-input OR gate, 3 NOT gate and one -2 input AND gate
- (d) 3-input AND gate, 3 NOT gate and one -2 input OR gate

Answer: (a)

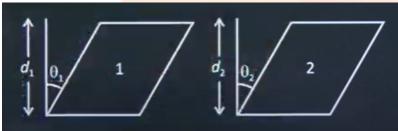
Question: A small mirror of mass m is suspended to a fix point with an ideal string of length I. A photon of energy E incident normally on the mirror. Find maximum angular deviation (θ) of the mirror.

(a)
$$\frac{3E}{mc\sqrt{gl}}$$

(b)
$$\frac{E}{2mc\sqrt{gl}}$$

(c)
$$\frac{E}{mc\sqrt{2gl}}$$

(d)
$$\frac{2E}{mc\sqrt{gl}}$$


Answer: (d)

Question: $\overset{\text{dec}}{L}$ and $\overset{\text{dec}}{p}$ are angular momentum about origin and linear momentum of a particle. If position vector of particle is given as $\overset{\text{dec}}{r} = a \left(\sin \omega \hat{t} i + \cos \omega \hat{t} j \right)$ then direction of force is Options:

- (a) Opposite to $L \times r$
- (b) Opposite to $p \times r$
- (c) Opposite to L.r
- (d) Opposite to $p \times L$

Answer: (d)

Question: The figure shows two boxes with identical square cross-sections and height h_1 and h_2 ($h_1 = 2h_2$) are made of different materials. An equal force is applied on the square cross-sections such that the deformations θ_1 and θ_2 are realized ($\theta_1 = \theta_2$). If shear modulus of box-1 is 4×10^9 N/m² and that of box-2 x × 10^9 N/m², then x is

Options:

- (a) 3
- (b) 5
- (c) 8
- (d) 10

Answer: (c)