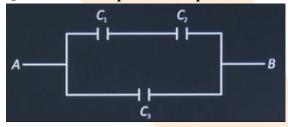


JEE-Main-04-04-2025 (Memory Based) [EVENING SHIFT] **Physics**

Question: A disc is performing pure rolling if speed of top point is 8 m/s. Find speed of point B.



Options:

- (a) 2 m/s
- (b) 4 m/s
- (c) 6 m/s
- (d) 8 m/s

Answer: (c)

Question: The equivalent capacitance between A and B is

Options:

$$\frac{C_1C_2 + C_2C_3 + C_1C_2}{C_2 + C_3}$$

(a)
$$C_2 + C_3$$

(b)
$$\frac{C_1C_2 + C_1C_3 + C_2C_3}{C_1 + C_2}$$

(b)
$$C_1 + C_2$$

(c)
$$\frac{2C_1C_2 + C_2C_3}{C_2 + C_3}$$

c)
$$C_2 + C_3$$

(d)
$$\frac{2C_2C_3 + C_1C_2}{C_1 + C_3}$$

(d)
$$C_1 + C_3$$

Answer: (b)

Question: A particle mass m is at a distance 3R from the centre of Earth. Find minimum kinetic energy of particle to leave Earth's field (R: Radius of Earth)

Options:

- 3 (a)
- (b) 3mgR

(c)
$$\frac{2}{3}$$
mgR

$$(d) \frac{mgR}{2}$$

Answer (a)

Question: In a YDSE setup, the slits are separated by 1.5 mm and the distance between slits and screen is 2 m. On using light of wavelength 400 nm, it is observed that 20 Maximas of double slit experiment lie inside the central maxima of single slit diffraction. The width of each slit is µm. **Answer: (150)**

Question: Relative permittivity and Relative permeability of a medium is

$$\epsilon_{\rm r} = \frac{1}{0.0885} \text{ and } \mu_{\rm r} = \frac{10}{\pi}.$$
Find the ratio of speed of light in vacuum to the speed of light in the given medium

the given medium

Options:

- (a) 6
- (b) 3
- (c) 4
- (d) 2

Answer: (a)

Question: If the displacement of the block is 5 m, the work done by force applied is

(coefficient of friction between block and surface is $\frac{4}{4}$)

Options:

- (a) $500\sqrt{2} \text{ J}$
- (b) 250 J

(c) 100 J

(d) 500 J

Answer: (d)

Question: A wave with angular frequency of 628 rad/sec is moving at 300 m/s. Find its wavelength

Options:

(a) 1

(b) 3

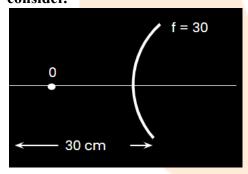
(c) 5

(d) 6

Answer: (b)

Question: The dimensional formula of the ratio of electrical dipole moment t the magnetic moment is $M^PL^QT^RA^S$. Then P, Q, R and S are

Options:


(a) 0, -1, 1, 0

(b) 0, 1, -1, 0

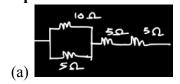
(c) 0, 1, 0, -1 (d) 0, 1, 0, 1

Answer: (a)

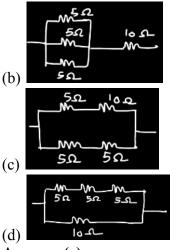
Question: An object O is kept at 30 cm from convex mirror of focal length of f = 30 cm as shown. Where to keep plane mirror so that image of plane mirror and convex mirror consider.

Options:

(a) At 22.5 cm from o towards mirror


(b) At 15 cm from o towards mirror

(c) At 25 cm from o towards mirror


(d) At 10 cm from o towards mirror

Answer: (a)

Question: If three 5 ohm resistance and one 10 ohm resistance are available. From the following network of resistors which combination give 6 ohm resistance. Options:

Answer: (c)

Question: There is a spherical drop of liquid of radius R which is rotating about its own

axis. The liquid evaporates till the radius becomes $\frac{1}{2}$. Find the ratio of $\omega_1 \& \omega_2$. The density remains same throughout in both the cases. Options:

(a)
$$\frac{1}{32}$$

(b)
$$\frac{1}{16}$$

(c)
$$\frac{3}{16}$$

(d)
$$\frac{-8}{8}$$

Answer: (a)

Question: Two polarises P_1 & P_2 are aligned in such a way that intensity is zero. P_3 polarised is inserted between P_1 and P_2 such that final transmitted ray will have the maximum intensity. Find angle between P_1 and P_3 .

Options:

(a)
$$\pi/4$$

(b)
$$\pi/2$$

(c)
$$\pi/3$$

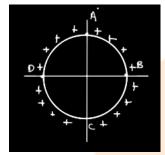
(d)
$$\pi/8$$

Answer: (a)

Question: Given below are two statements. One is labelled as Assertion (A) and the other is labeled as Reason (R).

Assertion (A): Plank's constant and linear momentum have same dimensions.

Reason (R): Bohr's angular momentum is integral multiple of $\frac{h}{2\pi}$.


In the light of the above statements, choose the correct answer from the options given below:

Options:

- (a) (A) is false but (R) is true
- (b) (A) is true but (R) is false
- (c) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
- (d) Both (A) and (R) are true but (R) is the correct explanation of (A)

Answer: (a)

Question: A uniformly charged ring having linear charge density λ . If electric field due charge on quadrant AB at the center of the ring is E. Find electric field at same point due arc ABC.

Options:

- (a) 2E
- (b) E
- (c) $\sqrt{2}$ E
- $(d) \sqrt{3} E$

Answer: (c)

Question: A charged particle of mass 16 μ g and charge 1.6 μ C gets a velocity in enters in a region of uniform and transverse magnetic field of 6.28 T Find time period of revolution of charged particle

Options:

- (a) 0.02 sec
- (b) 0.01 sec
- (c) 10 sec
- (d) 100 sec

Answer: (b)

Ouestion: Match the column.

Ques	Column-I		Column-II
a.	Adiabatic process	(i)	W∝∆T

b.	Isochoric process	(ii)	W = 0
c.	Isobaric process	(iii)	$\Delta \mathbf{U} + \mathbf{W} = 0$
d.	Isothermal process	(iv)	$\Delta U = 0$

Options:

(a) a(ii), b(iii), c(i), d(iv)

(b) a(i), b(ii), c(iii), d(iv)

(c) a(iii), b(ii), c(i), d(iv)

(d) a(iii), b(ii), c(iv), d(ii)

Answer: (c)

Question: n identical bulbs each takes power p when connected with main supply. If n bulbs are connected in series with main supply, then power will be Options:

(a) np

(b) $\frac{p}{n^2}$

<u>p</u>

(c) n

 $(d) n^2 p$

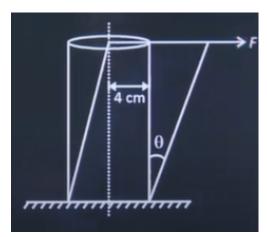
Answer: (c)

Question: An ac source of 100π volt is connected to the given circuit. Find maximum value of the current in the circuit.

Options:

(a)
$$\frac{1}{\sqrt{2}}$$
 A

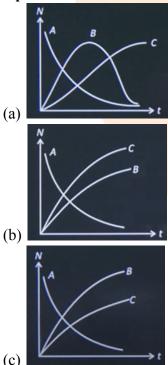
(b) 1 A


(c)
$$\sqrt{3}$$
 A

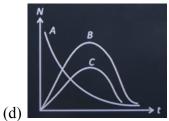
(d) 0.5 A

Answer: (b)

Question: A force $F = 10^5$ N is applied on the cylinder as shown. If the shear modulus of the cylinder is 10^{10} N/m² find θ .


Options:

- (a) $\pi/160$
- (b) $1/160\pi$
- (c) $1/16\pi$
- (d) $\pi/16$


Answer: (b)

Question: In a successive nuclear decay, a sample of radioactive nuclei A decays into an unstable nuclei B which further disintegrates into a stable nuclei C. Which of the following graphs correctly represents the concentration of the nuclei as a function of time? (Assume concentration of B and C to be zero initially)

Options:

Answer: (a)

Question: For n-type semi-conductor choose the correct option having correct statements

- $(i) \quad n_e \cdot n_n = n_i^2$
- (ii) $n_e \cdot n_n \neq n_i^2$
- (iii) Pentavalent impurity
- (v) Additional are not generated
- (iv) Electrons are majority carriers

Options:

- (a) (ii), (iii), (iv)
- (b) (i), (iii), (iv), (v)
- (c) (i), (v) only
- (d) (i), (iii), (iv)

Answer: (b)

Question: Two adiabatic containers A and B have volume in the ratio 1: 2. The pressure and temperature for gas in A is 8 kPa and 1000 K, and the corresponding values for B is 7 kPa and 500 K. If the containers are connected by a thin pipe and gases are allowed to mix thoroughly, the final temperature of the mixture is 600 K. The final pressure in the vessel is

Options:

- (a) 7.6 kPa
- (b) 7.8 kPa
- (c) 7.4 kPa
- (d) 7.2 kPa

Answer: (d)