

JEE MAIN 7 APRIL 2025 SHIFT 1

MATHEMATICS QUESTION PAPER WITH ANSWER KEY

Q. No.	Question	Answers
1	The remainder when 64 ^{64 64} is divided by 7 is equal to	1
2	Let A be a set defined as $A = \{2, 3, 6, 9\}$. Find the number of singular matrices of order 2 * 2 such that elements are from the set A.	36
3	Area bounded by the curves $y = 4 - x^2/4$ and $y = x - 4/2$ (in square units) is	125/3
4 C	If X_1 , X_2 , X_3 , X_4 are in GP, then we subtract 2, 4, 7, 8 from X_1 , X_2 , X_3 , X_4 respectively, then the resultant numbers are in AP, then the value of 1/24 ($X_1 \cdot X_2 \cdot X_3 \cdot X_4$) is	2 ³ /3 ⁹
₅ Di	If $f(x) = (x^2/2) - [\sqrt{x}] \forall x \in [0, 4]$, where [.] denotes the greatest integer function, then number of points of discontinuity of $f(x)$ is	& v e
6	Solve: $\int_0^{\pi} \frac{(x+3) \sin x}{1+3 \cos^2 x} dx$	$\pi(\pi + 6)/3\sqrt{3}$
7	If α and β are negative real roots of the quadratic equation $x^2 - (p + 2)x + (2p + 9) = 0$ and pe $\varepsilon (\alpha, \beta)$. Then the value of $\beta^2 - 2\alpha$ is	13

	1	1
8	Let the straight line AB: $x + y - 2 = 0$, AC: $3y - x = 2$ intersects x-axis at B and C respectively. If P is the orthocentre of the triangle ABC, then area of the triangle CPB is	6 sq. units
9	Statement 1: If $(z+i/z-i)$ is purely real, then there are exactly 2 complex numbers z. Statement 2: If $(z+1/z-1)$ is purely imaginary, then there are infinite such complex numbers z. Then,	Statement 2 is true.
10	The value of the limit $\lim_{x \to 0^+} \frac{(\tan^{-1} 5x^{1/3})^2 \cdot \log_e(1+3x^2) \cdot (e^{5x^{4/3}} - 1)}{(\sin^{-1}(3\sqrt{x}))^8}$ is	5 ³ /3 ⁷
11	Line L passes through (1, 1, 1) and line L intersects $L_1 \& L_2$ when $L_1: x-1/2 = y+1/3 = z/4$ and $L_2: x-1/1 = y-3/4 = z/1$ then L passes through	(9, 15, 18)
CollegeDekho		
Discover · Prepare · Achieve		