

# **PHYSICS**

#### **SECTION - A**

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

#### Choose the correct answer:

- 1. The dimensions of a physical quantity  $\epsilon_0 \frac{d\phi_E}{dt}$  are similar to [Symbols have their usual meanings]
  - (1) Electric current
- (2) Electric field
- (3) Electric flux
- (4) Electric charge

#### Answer (1)

- **Sol.**  $\varepsilon_0 \frac{d\phi_E}{dt}$  represents displacement current hence, dimensions are same as electric current.
- 2. Six resistors of resistance *R* each are connected as shown in the figure. Find equivalent resistance across points *A* and *B*.



(1)  $\frac{R}{2}$ 

(2)  $\frac{R}{3}$ 

- (3)  $\frac{2R}{3}$
- (4)  $\frac{3R}{2}$

#### Answer (1)

Sol.



$$\frac{1}{R_{\rm eq}} = \frac{1}{R} + \frac{1}{2R} + \frac{1}{2R}$$

$$R_{\rm eq} = \frac{R}{2}$$

3. An object is placed below two parallel layers of thickness  $d_1$ ,  $d_2$  are refractive index  $\mu_1$ ,  $\mu_2$  respectively. Find apparent depth of the object.



- (1)  $\frac{d_1\mu_2 d_2\mu_1}{\mu_1\mu_2}$
- $(2) \quad \frac{d_1\mu_2 + d_2\mu_1}{\mu_1\mu_2}$
- (3)  $\frac{d_1\mu_1 + d_2\mu_2}{\mu_1\mu_2}$
- (4)  $\frac{d_1\mu_1 d_2\mu_2}{\mu_1\mu_2}$

#### Answer (2)

**Sol.** 
$$\mu = \frac{d_1}{\mu_1} + \frac{d_2}{\mu_2}$$

# THE LEGACY OF SUCCESS CONTINUES



70+ PERCENTILERS

1000+ 99 PERCENTILER

4000+ 95 PERCENTILERS









100
Per conflice

A Motible

A Motible

Per conflice

PSID: 0000 3389699

100
Percentile
In Physics
PSID: 00014863322

100
Percentile in fritystes & Citematris Communication Psychological PsiD: 00014768785

### JEE (Main)-2025: Phase-2 (07-04-2025)-Morning



- A lens of focal length 20 cm in air is made of glass with refractive index 1.6. What is its focal length when it is immersed in a liquid of refractive index 1.8.
  - (1) -36 cm
- (2) -72 cm
- (3) 60 cm
- (4) -108 cm

#### Answer (4)

**Sol.** 
$$\left(\frac{\mu_g}{\mu_{air}} - 1\right) F_{air} = \left(\frac{\mu_g}{\mu_{liq}} - 1\right) F_{liq}$$

$$F_{liq} = \frac{0.6 \times 20}{-0.2} \times 1.8$$

$$= -108 \text{ cm}$$

MOI of disc about central axis perpendicular to surface is I 5. then moment of inertia of given assembly is, where each round object is of same mass and same radius. (Given centre of round bodies and axis are planar.)



- (2)  $\frac{79}{17}I$

### Answer (3)

**Sol.** 
$$I_{\text{disc}} = \frac{MR^2}{2}$$

 $I(\text{of assembly}) = I_1 + I_2 + I_3$ 

$$= \frac{MR^2}{4} + \left(\frac{2}{5}MR^2 + MR^2\right) + \frac{2}{3}MR^2 + MR^2$$

$$=\frac{199}{60}MR^2=\frac{199}{30}I$$

A rod of length 5 L is converted in L-shape as shown. 6.



Find the position of its center of mass w.r.t origin.

- (1)  $\left(L, \frac{3L}{2}\right)$
- (2)  $\left(\frac{9L}{12}, \frac{5L}{12}\right)$

**Sol.** 
$$x_m = \frac{2m \times L + 0}{5m} = \frac{2L}{5}$$

$$y_m = \frac{0 + 3m \times \frac{3L}{2}}{5m} = \frac{9L}{10}$$

- A block of mass m slides on inclined plane of inclination 60° with an acceleration of g/2 then friction coefficient between block and plane is
- (2)  $\frac{1}{\sqrt{3}+1}$
- (3)  $\sqrt{3}-1$

Answer (3)

## THE LEGACY OF SUCCESS CONTINUES JEE Main (Session-1) 2025

70+ PERCENTILERS

1000 + 99 PERCEN

4000 + 95 PERCE S ABOVE













**Sol.** 
$$a = g(\sin\theta - \mu\cos\theta) = \frac{g}{2}$$

$$\sin 60 - \mu \cos 60 = \frac{1}{2}$$

$$\frac{\sqrt{3}}{2} - \frac{\mu}{2} = \frac{1}{2}$$

$$\Rightarrow \mu = \sqrt{3} - 1$$

- 8. A composite sound wave is represented by y = A  $\cos\omega t \cdot \cos\omega' t$ . The observed beat frequency is
  - $(1) \quad \frac{\omega \omega}{2\pi}$
  - (2)  $\frac{\omega \omega'}{\pi}$
  - (3)  $\frac{\omega'}{2\pi}$
  - (4)  $\frac{\omega'}{\pi}$

#### Answer (4)

**Sol.** The given wave can be represented as

$$y = \frac{A}{2}\cos(\omega + \omega')t + \cos(\omega - \omega')t$$

$$\Rightarrow$$
 beat frequency  $=\frac{1}{2\pi} (\omega + \omega') - (\omega - \omega') = \frac{\omega'}{\pi}$ 

- Two convex lenses of focal length 30 cm and 10 cm are kept 10 cm apart. Principal axis of the lenses is common. Find equivalent power of the lens system.
  - (1) 5 D
  - (2) 10 D
  - (3) 6 D
  - (4) 13.33 D

#### Answer (2)

**Sol.**  $P = P_1 + P_2 - dP_1P_2$ 

- 10. Two rods whose lengths are in ratio of 1:3 and diameter are in ratio of 2:1, then ratio of elongations of rod if force applied and material of rods are same
  - (1) 1:12
  - (2) 1:3
  - (3) 4:1
  - (4) 1:1

#### Answer (1)

**Sol.** 
$$\Delta l = \frac{Fl}{YA} \Rightarrow \frac{\Delta l_1}{\Delta l_2} = \frac{l_1 / l_2}{A_1 / A_2} = \frac{1/3}{4/1} = \frac{1}{3} \times \frac{1}{4} = \frac{1}{12}$$

 A charge particle moves in circular path in uniform magnetic field. Then graph of radius of circular path vs its kinetic energy is best represented by



















### JEE (Main)-2025: Phase-2 (07-04-2025)-Morning





#### Answer (3)

**Sol.** 
$$r = \frac{mv}{qB} = \frac{\sqrt{2mk}}{qB}$$
  
 $\Rightarrow r = c\sqrt{k}$   
 $\Rightarrow k \propto r^2$ 

12. Find the work done for the process shown in figure.



- (1)  $\frac{3\pi}{40}$  J
- (3)  $\frac{\pi}{10}$  J
- (4)  $\frac{3\pi}{20}$  J

#### Answer (1)

**Sol.** Work done = Area = 
$$\pi(\Delta P)(\Delta V) \times \frac{1}{4}$$

$$=\pi \times 6 \times 10^{3} \text{ Pa} \times 50 \times 10^{-6} \text{ m}^{3} \times \frac{1}{4}$$

$$=\frac{0.3\pi}{4} J = \frac{3\pi}{40} J$$

#### Match the two columns.

#### Column-I

#### Column-II

- Monoatomic gas
- (i)  $\gamma = 7/5$
- Diatomic rigid gas
- (ii)  $\gamma = 4/3$
- Diatomic non-rigid
- (iii)  $\gamma = 5/3$
- Triatomic non-linear rigid
- (iv)  $\gamma = 9/7$
- (1) a(i), b(iii), c(ii), d(iv)
- (2) a(iii), b(i), c(iv), d(ii)
- (3) a(ii), b(iv), c(i), d(ii)
- (4) a(iii), b(iv), c(i), d(ii)

#### Answer (2)

**Sol.** 
$$f_{\text{mono}} = 3$$

$$f_{\text{atomic rigid}} = 5$$

$$f_{\text{diatomic non-rigid}} = 7$$

$$f_{\text{triatomic}} = 6$$

$$\gamma = 1 + \frac{2}{f}$$

Let  $\boldsymbol{\lambda}_{\!\scriptscriptstyle 1}$  be largest wavelength of Lyman series for hydrogen atom and  $\boldsymbol{\lambda}_{\!_{2}}$  be largest wavelength of Balmer series then

$$\frac{\lambda_1}{\lambda_2}$$
 is

#### Answer (1)

**Sol.** 
$$\frac{1}{\lambda} = Rz^2 \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

$$\frac{1}{\lambda_1} = Rz^2 \left( \frac{1}{1} - \frac{1}{4} \right)$$

$$\frac{1}{\lambda_2} = Rz^2 \left( \frac{1}{4} - \frac{1}{9} \right)$$

$$\frac{\lambda_1}{\lambda_2} = \frac{5}{27}$$

# THE LEGACY OF SUCCESS CONTINUES

70+ PERCENTILERS

1000 + 99 PERCENTILERS

4000+ 95 PERCE S ABOVE











15. Two particles A and B are projected from a point on ground with same speed at angles 45° +  $\theta$  and 45° -  $\theta$  with horizontal. If the times of flight are  $T_A$  and  $T_B$  respectively,

then 
$$\frac{T_A}{T_B}$$
 is equal to

- (1)  $\frac{1+\tan\theta}{1-\tan\theta}$
- (2)  $2 \tan \theta$
- (3)  $tan2\theta$
- (4)  $\frac{1-\tan\theta}{1+\tan\theta}$

#### Answer (1)

**Sol.** 
$$T = \frac{2u\sin\theta}{g}$$

$$\frac{T_A}{T_B} = \frac{\sin(45^\circ + \theta)}{\sin(45^\circ - \theta)}$$

$$= \frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta}$$

$$= \frac{1 - \tan \theta}{1 + \tan \theta}$$

16. Two plane polarised light combine at certain point whose electric field components are

$$\overrightarrow{E_1} = E_0 \sin \omega t \ \hat{i}$$

$$\overrightarrow{E_2} = E_0 \sin\left(\omega t + \frac{\pi}{3}\right)\hat{i}$$

Find the amplitude of electric field of resultant wave.

- (1)  $0.9 E_0$
- (2)  $E_0$
- (3)  $1.7 E_0$
- (4)  $3.7 E_0$

#### Answer (3)

**Sol.**  $E_R = \sqrt{E_0^2 + E_0^2 + 2E_0^2} \cos \phi$ 

$$\phi = \frac{\pi}{3}$$

$$=\sqrt{3}E_0=1.7E_0$$

- 17. A variable force  $\vec{F} = 2t\hat{i} + 3t^2\hat{j}$  acts on a particles of mass 1 kg, which is at rest at t = 0. Find the power supplied as a function of time.
  - (1)  $2t^3 + 3t^5$
  - (2)  $t^3 + 4t^5$
  - (3)  $t^3 + 4t^3$
  - (4)  $t^3 + 5t^4$

#### Answer (1)

**Sol.** 
$$\vec{V} = \frac{1}{m} \int_{d}^{t} \vec{F} dt$$

$$t^2\hat{i} + t^3\hat{i}$$

Power = 
$$\vec{F} \cdot \vec{V}$$

$$= 2t^3 + 3t^5$$

 Find the current through the ammeter for the circuit shown in figure. (Reading of voltmeter = 4 V)



- (1) 1 mA
- (2) 7 mA
- (3) 10 mA
- (4) 3 mA

Answer (3)

# THE LEGACY OF SUCCESS CONTINUES

Nedica

4 STATE TOPPERS

70+ 100
PERCENTILERS

1000+ 99 PERCENTILERS

4000 + 95 PERCENTILERS



JEE Main (Session-1) 2025













#### JEE (Main)-2025: Phase-2 (07-04-2025)-Morning



**Sol.** Voltage across 800  $\Omega$  = 12 V – 4 V

$$i = \frac{8}{800} = 10 \text{ mA}$$

 $\it i=i$  (current through Zener diode) +  $\it i$  (current through 400  $\Omega$  resister)

10 mA = 
$$i_z + \frac{4}{400} \implies 10 \text{ mA} = I_z + 10 \text{ mA}$$

 $I_Z = 0$ 

19. Find the dimensions of the physical quantity  $\frac{2B^2\mu_0}{\epsilon_0}$ 

(Symbols have their usual meanings)

- (1)  $M^4 L^{-2} T^{-4} A^{-1}$
- (2)  $M^4 L^4 T^{-10} A^{-6}$
- (3)  $M^{-1}L^{-2}T^{-3}A^{-1}$
- (4)  $M^{-1}L^{-4}A^{-1}$

#### Answer (2)

**Sol.** 
$$[B] = M T^{-2} A^{-1}$$

$$[\mu_0] = M L T^{-2} A^{-2}$$

$$[\varepsilon_0] = M^{-1} L^{-3} T^4 A^2$$

$$\left[\frac{2B^2\mu_0}{\epsilon_0}\right] = M^4 L^4 T^{-10} A^{-6}$$

20.

#### SECTION - B

**Numerical Value Type Questions:** This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Current in circuit varies with time as  $i=5\sqrt{2}+10\cos\left(\omega t+\frac{\pi}{6}\right), \text{ then rms current in the circuit shall be }\underline{\hspace{1cm}} A.$ 

Answer (10)

**Sol.** 
$$i = i_1 + i_2 \sin \theta$$

$$\Rightarrow i^2 = i_1^2 + i_2^2 \sin^2 \theta + 2i_1i_2 \sin \theta$$

Taking average both side

$$\langle i^2 \rangle = i_1^2 + \frac{i_2^2}{2}$$

$$\Rightarrow i_{rms} = \sqrt{i_1^2 + \frac{i_2^2}{2}}$$

$$= \sqrt{50 + \frac{1}{2} \times 100} = 10$$

22. Resonance tube closed at one end. Two consecutive resonances were obtained at lengths  $L_1 = -120$  cm and  $L_2 = 200$  cm if velocity of sound = 340 m/s.

The frequency of sound is  $\frac{100\alpha}{8}$  Hz then  $\alpha$  =

Answer (17)

**Sol.** 
$$f = \frac{v}{\lambda}$$
,  $L_2 - L_1 = \frac{\lambda}{2}$ 

$$f = \frac{340}{2(80 \text{ cm})} = \frac{340 \times 100}{2 \times 80}$$

$$=\frac{1700}{8}$$
 Hz  $=\frac{100}{8} \times 17$  Hz

$$a = 17 \text{ Hz}$$

23.

24.

25.

# THE LEGACY OF SUCCESS CONTINUES OUR JEE CHAMPION 4 STATE 70+ PERCENTILERS 1000+ 90 PERCENTILERS 10000+ 90 PERCENTILERS 40000+ 95 PERCENTILERS 40000+ 95 PERCENTILERS













