

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 1. Consider the last electron of element having atomic number 9 and choose correct option.
 - (1) Sum total nodes = 1
 - (2) n = 2; l = 0
 - (3) Last electron enters in 2s subshell
 - (4) There are $5e^-$ with I = 0

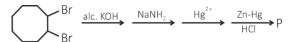
Answer (1)

Sol. Electronic configuration of fluorine \Rightarrow 1s²2s²2p⁵

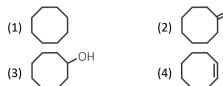
Last electron enters in 2p-subshell.

Number of angular nodes = I = 1

Number of radial nodes = n - l - 1 = 0


Total nodes = 1

Number of electrons with I = 0 is 4


- 2. Which of the following has sp^3d^2 hybridisation?
 - (1) [NiCl₄]²⁻
 - (2) [Ni(CO)₄]
 - (3) SF₆
 - (4) $[Ni(CN)_4]^{2-}$

Answer (3)

- **Sol.** SF₆ has 6 bond pairs, 6 hybridised sp^3d^2 orbitals.
- Consider the following sequence of reactions given below

The product P is

Answer (1)

Sol.
$$Br$$
 alc. KOH Br $NaNH_2$ Hg^{2+} , H_3O^4

- Atomic number of element with lowest first ionisation enthalpy is
 - (1) 32

(2) 19

(3) 35

(4) 87

Answer (4)

Sol. Atomic Number

32 ⇒ Ge

19 ⇒ K

35 ⇒ CI

87 ⇒ Fr

87 Fr has lowest 1st ionisation enthalpy.

5. Consider the following statement

Statement-I: H₂Se is more acidic than H₂Te.

Statement-II: H_2Se has higher bond dissociation enthalpy, then H_2Te

In light of above statement, choose correct option.

- (1) Statement-I is true and statement-II is false
- (2) Statement-I is false and statement-II is true
- (3) Both statement-I and statement-II are true
- (4) Both statement-I and statement-II are false

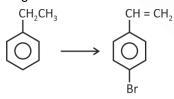
Answer (4)

- **Sol.** H₂Se is less acidic than H₂Te as bond dissociation enthalpy of $\mathrm{H_2Te}$ is lower then $\mathrm{H_2Se}$ and hence $\mathrm{H^+}$ is dissociated with more ease.
- The correct IUPAC name of
 - (1) 4-ethylcyclopent-2-en-1-ol
 - (2) 3-ethylcyclopent-4-en-1-ol
 - (3) 5-ethylcyclopent-1-en-3-ol
 - (4) 3-ethylcyclopent-1-en-5-ol

Answer (1)

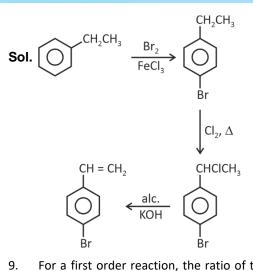
- Correct decreasing order of spin only magnetic moment values is
 - (1) $Cr^{3+} > Cr^{2+} > Cu^{2+} > Cu^{+}$ (2) $Cr^{3+} > Cr^{2+} > Cu^{+} > Cu^{2+}$
 - (3) $Cr^{2+} > Cr^{3+} > Cu^{2+} > Cu^{+}$ (4) $Cr^{2+} > Cr^{3+} > Cu^{+} > Cu^{2+}$

Answer (3)


Sol.
$$Cu^+$$
 [Ar] $3d^{10} \Rightarrow n = 0$, $\mu = 0$

$$Cu^{2+}$$
 [Ar] $3d^9 \Rightarrow n = 1$, $\mu = \sqrt{3}$ BM

$$Cr^{2+}$$
 [Ar] $3d^4 \Rightarrow n = 4$, $\mu = \sqrt{24}$ BM


$$Cr^{3+}$$
 [Ar] $3d^3 \Rightarrow n = 3$, $\mu = \sqrt{15}$ BM

8. The correct sequence of reagents to the added for the following conversion

- (1) Br₂/Fe; alc. KOH; Cl₂/FeCl₃
- (2) Br₂/FeCl₃; Cl₂/Δ; alc. KOH
- (3) FeCl₃/Br₂; alc. KOH; H⁺/Δ
- (4) Cl₂/FeCl₃; Br₂/FeCl₃; alc. KOH

Answer (2)

- For a first order reaction, the ratio of time required is $\frac{t_1}{2}$, if t, is time consumed when reactant reaches $\frac{1}{4}$ th of initial concentration and t_2 is the time when
 - it reaches $\frac{1}{8}$ th of initial concentration

Answer (1)

Sol.
$$t_1 = \frac{2.303}{K} \log \frac{A_0}{A_{0/4}} = \frac{2.303}{K} \log 4$$

$$t_2 = \frac{2.303}{K} \log \frac{A_0}{A_{0/8}} = \frac{2.303}{K} \log 8$$

$$\frac{t_1}{t_2} = \frac{2 \log 2}{3 \log 2} = \frac{2}{3}$$

THE LEGACY OF SUCCESS CONTINUES

70+ PERCENTILERS

1000 + 99 PERCENTILERS

JEE (Main)-2025 : Phase-2 (08-04-2025)-Evening

10.
$$OH^{-}$$
 Product

The correct IUPAC name of the product is

- (1) 1-acetyl-2-methy cyclohexene
- (2) (2-methylcyclohex-1-enyl)ethanone
- (3) cyclo-oct-2-en-1-one
- (4) 2-cycloocten-1-one

Answer (2)

Sol.
$$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$$
 $\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array}$ $\begin{array}{c} 0 \\ 0 \\ \end{array}$

The IUPAC Name of

- 1-(2methylcyclohex-1-enyl)ethanone
- 11. Match list-I with list-II and choose the correct option.

	List-l		List-II
(a)	Nucleophile	(i)	Tetrahedral shape
(b)	Electrophile	(ii)	Planar and sp ² hybridized
(c)	Carbocation	(iii)	Species that accepts electron
(d)	Carbanion	(iv)	Species that donate electron

- (1) a(i), b(ii), c(iv), d(iii)
- (2) a(iv), b(iii), c(ii), d(i)
- (3) a(iv), b(iii), c(i), d(ii)
- (4) a(iii), b(iv), c(ii), d(i)

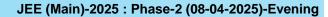
Answer (2)

Sol. Electrophile \rightarrow Electron loving species

Nucleophile → +ve charge/vacant orbital loving species

$$^+$$
 CH₃ \Rightarrow planer (sp²); CH₃ \Rightarrow tetrahedral

12. Match List-I with List-II and select the correct option.


	List-I		List-II
A	dil KMnO ₄	I	Unsaturation test
В	FeCl ₃ test	II	Alcoholic -OH
С	Liberate CO₂ with NaHCO₃	III	Phenolic -OH
D	Ceric Ammonium nitrate test	IV	Carboxylic Acid

- (1) A-I, B-IV, C-III, D-II
- (2) A-IV, B-I, C-III, D-II
- (3) A-I, B-III, C-IV, D-II
- (4) A-III, B-II, C-IV, D-I

Answer (3)

Sol. A-I, B-III, C-IV, D-II

THE LEGACY OF SUCCESS CONTINUES JEE Main (Session-1) 2025 4 STATE TOPPERS 70+ PERCENTILERS PROCESSION 1000+ 99 PRECENTILES 1000+

- 13. An aqueous solution of 0.1 M HA shows depression in freezing point of 0.2°C. If K_f (H_2O) = 1.86 K kg mol⁻¹ and assuming molarity = molality, find the dissociation constant of HA.
 - (1) 4.50×10^{-5}
 - (2) 6.25×10^{-3}
 - (3) 5.625×10^{-4}
 - (4) 2.65×10^{-4}

Answer (3)

Sol.
$$HA \rightleftharpoons H^+ + A^-$$

0.1(1- α)

 $i = 1 + \alpha$

 $\Delta T_f = iK_f m$

 $0.2 = i \times 1.86 \times 0.1$

$$i = \frac{0.2}{0.186} = 1.075$$

 $\alpha = 0.075$

$$K_a = \frac{0.1(\alpha)^2}{1-\alpha} \simeq 0.1(0.075)^2$$

 $= 5.625 \times 10^{-4}$

- 14. Which of the following solution can form minimum boiling azeotrope?
 - (1) $C_2H_5OH + H_2O$
 - (2) n-heptane + n-hexane
 - (3) CH₃COOH + C₅H₅N
 - (4) $C_2H_5Br + C_2H_5I$

Answer (1)

Sol. The solution showing positive deviation forms minimum boiling azeotrope.

- 15. On combustion of 0.21 g of an organic compound containing C, H and O gave 0.127 g H_2O and 0.307 g CO_2 . The percentage of H and O in the given organic compound respectively are
 - (1) 7.55 and 43.85
 - (2) 6.72 and 53.41
 - (3) 6.72 and 39.87
 - (4) 53.41 and 39.60

Answer (2)

Sol. Mass of organic compound = 0.21 g

Mass of H_2O formed = 0.127 g

Mass of CO_2 formed = 0.307 g

Mass of H in organic compound = $\frac{0.127 \times 2}{18}$ g

% of H in organic compound = $\frac{0.127 \times 2 \times 100}{18 \times 0.21}$ = 6.72 %

Mass of C in organic compound = $\frac{0.307 \times 12}{44}$ g

% of C in organic compound = $\frac{0.307 \times 12 \times 100}{44 \times 0.21}$ = 39.87 %

- \therefore % of O in organic compound = 100 6.72 39.87 = 53.41 %
- 16. Match List-I with List-II and select the correct option.

	List-l (Complex)		List-II (Characteristics)
A.	[NiCl ₄] ²⁻	I.	sp³, tetrahedral, 3.87 BM
В.	[Ni(CN ₄)] ²⁻	II.	dsp ² , square planar, 0 BM

JEE (Main)-2025: Phase-2 (08-04-2025)-Evening

C.	[CoCl ₄] ²⁻	III.	sp³d², octahedral, 2.82 BM
D.	[Ni(H ₂ O) ₆] ²⁺	IV.	sp³, tetrahedral, 2.82 BM

- (1) A-II, B-IV, C-I, D-III
- (2) A-IV, B-I, C-II, D-III
- (3) A-I, B-II, C-IV, D-III
- (4) A-IV, B-II, C-I, D-III

Answer (4)

- **Sol.** $[NiCl_4]^{2-} \Rightarrow Ni^{2+} (3d^8) \Rightarrow sp^3$, octahedral, 2.82 BM $[Ni(CN_4)]^{2-} \Rightarrow Ni^{2+} (3d^8) \Rightarrow dsp^2$, square planar, 0 BM $[Ni(H_2O)_6]^{2+} \Rightarrow Ni^{2+} (3d^8) \Rightarrow sp^3d^2$, octahedral, 2.82 BM $[CoCl_4]^{2-} \Rightarrow Co^{2+} (3d^7) \Rightarrow sp^3$, tetrahedral, 3.87 BM
- 17. Consider the following amino acid.

$$\begin{array}{c} \text{CH(CH}_3)_2 \\ \\ \text{H}_2\text{N} \longrightarrow \text{CH} - \text{COOH} \\ \\ \downarrow \\ \text{(A)} \end{array}$$
 At pH = 2 At pH = 10 \((B) \)

Which of the following option contain correct structure of (A) and (B)

(3) (A) =
$$H_3N - CH - COOH$$

$$CH(CH_3)_2$$

$$CH(CH_3)_2$$

$$I$$

$$(B) = NH_2 - CH - COO^-$$

(4) (A) =
$$H_2N - CH - COOH$$

$$CH(CH_3)_2$$

+ I
(B) = $NH_3 - CH - COO^-$

Answer (3)

Sol. At pH = $2 \rightarrow NH_2$ group exists as NH_3^+

At pH = 10 - COOH group is ionised to COO-

18. In which of the following reaction, major product is matched correctly?

$$(1) \bigcirc + EtBr \longrightarrow \bigcirc$$

(2)
$$t-BuO^-Na^+ + EtBr \xrightarrow{\Delta} t-Bu-O-Et$$

$$(3) \bigcirc + nPr - Br \longrightarrow \bigcirc$$

(4) Sec BuO⁻K⁺ + EtBr $\xrightarrow{\Delta}$ Sec But – OEt

Answer (3)

$$\begin{array}{c}
O^{-}Na^{+} & OMe \\
\hline
OMe & OMe
\end{array}$$
Sol.

$$\begin{array}{c}
CH_{3} \\
H_{3}C - C - O^{-}Na^{+} + EtBr \longrightarrow CH_{3} - C - O - Et\\
I \\
CH_{3}
\end{array}$$

THE LEGACY OF SUCCESS CONTINUES

70+ PERCENTILERS

1000 + 99 PERCENTILERS & ABOVE

4000+ 95 PERCENTILE

Sanvi Jain

$$O^{-}Na^{+}$$

$$+ n-Pr-Br \longrightarrow O-n-Pr$$

$$\begin{array}{c} CH_3 \\ I \\ H,C-CH_3-CH-O^-K^+ + Et-Br \longrightarrow H,C-CH_3-CH-O-Et \end{array}$$

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. The energy of an electron in first Bohr orbit of H-atom is –13.6 eV. Find the magnitude of energy of an electron in first excited state of Be³⁺ ion in eV.

Answer (54)

Sol.
$$E_{2, Be^{3+}} = -13.6 \times \frac{Z^2}{n^2}$$
$$= -13.6 \times \frac{4^2}{2^2}$$

$$= -13.6 \times 4$$

$$= -54.4 \text{ eV}$$

22. Consider the following cell

$$Pt(s)\,H_{2}\,(1\,atm)\,|\,H^{+}\,(1\,M)\,|\,|\,Cr_{2}O_{7}^{2-}\,,\,Cr^{3+}\,,\,H^{+}\,|\,Pt(s)$$

$$\label{eq:cr2O77-cr3+} E^{\circ}_{\ Cr_2O_7^{2-}/Cr^{3+}} = 1.33\ V\ ,\ At\ equilibrium\ \frac{[Cr^{3+}]^2}{[Cr_2O_7^{2-}]} = 10^{-7}$$

At what pH at cathode, \mathbf{E}_{cell} of reaction is zero.

Answer (10)

Sol. Cell reaction

Cathode
$$Cr_7O_7^{2-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3+}$$

Anode
$$(H_2 \longrightarrow 2H^+ + 2e^-) \times 3$$

$$Cr_2O_7^{2-} + 14H^+ + 3H_2 \longrightarrow 6H^+ + 2Cr^{3+}$$

$$K = \frac{[H^+]^6_{anode}[Cr^{3+}]^2}{[H^+]^{14}_{anode}[Cr_2O_7^{7-}] \times (p_{H_2})^3} = \frac{[Cr^{3+}]^2}{[Cr_2O_7^{7-}][H^+]^{14}_{anode}}$$

$$E_{cell} = E^{\circ}_{cell} - \frac{0.06}{n} log K$$

At equilibrium. $E_{cell} = 0$

$$0 = 1.33 - \frac{0.06}{6} \log \frac{10^{-7}}{[H^+]^{14}}$$

$$133 = \log \frac{10^{-7}}{\left[H^{+}\right]^{14}}$$

$$[H^+]^{14} = \frac{10^{-7}}{10^{133}} = 10^{-140}$$

$$[H^+] = 10^{-10}$$

23.

24.

25.

THE LEGACY OF SUCCESS CONTINUES E Main (Session-1) 2025 STATE TOPPERS TOP PROCEDURES 1000 + 99 RINGHARDS 100