

GOVERNMENT OF KARNATAKA KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD WEIGHTAGE FRAMEWORK FOR MQP 1: II PUC MATHEMATICS(35):2024-25

Chapter	CONTENT	Number of Teaching hours	PART A 1 mark		PART B 2 mark	PART C 3 mark	PART D 5 mark	PART E		Total
			MCQ	FB				6 mark	4 mark	
1	RELATIONS AND FUNCTIONS	9	1			1	1			9
2	INVERSE TRIGONOMETRIC FUNCTIONS	6	1		1	1				6
3	MATRICES	9	1			1	1			9
4	DETERMINANTS	12	1		1		1		1	12
5	CONTINUITY AND DIFFERENTIABILITY	20	2	1	1	1	1		1	17
6	APPLICATION OF DERIVATIVES	10	2	1	1	1				8
7	INTEGRALS	22	2		1	1	1	1		18
8	APPLICATION OF INTEGRALS	5					1			5
9	DIFFERENTIAL EQUATIONS	10		1	1		1			8
10	VECTOR ALGEBRA	11	2	1	1	1				8
11	THREE D GEOMETRY	8	1		1	1				6
12	LINEAR ROGRAMMING	7						1		6
13	PROBABILITY	11	2	1	1	1				8
	TOTAL	140	15	5	9	9	7	2	2	120

GOVERNMENT OF KARNATAKA KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD **Model Question Paper -1**

II P.U.C: MATHEMATICS (35): 2024-25

Time: 3 hours Max. Marks: 80

Instructions:

- The question paper has five parts namely A, B, C, D and E. Answer all the 1) parts.
- 2) PART A has 15 MCQ's ,5 Fill in the blanks of 1 mark each.
- 3) *Use the graph sheet for question on linear programming in PART E.*
- 4) For questions having figure/graph, alternate questions are given at the end of question paper in separate section for visually challenged students.

PART A

I. **Answer ALL the Multiple Choice Questions**

 $15 \times 1 = 15$

1. Let the relation R in the set A = $\{x \in Z: 0 \le x \le 12\}$, given by R={(a, b): |a-b| is multiple of 4}, then [3], the equivalence class containing 3 is

A) {1,5,9}

B) ϕ

C)A

D) {3, 7,11}

2. If $\cot^{-1} x = y$, then

(A) $0 \le y \le \pi$ (B) $0 < y < \pi$ (C) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

3. If $A = [a_{ij}]$ is a symmetric matrix of order $m \times n$ then

(A) m=n and a_{ij} =0 for i=j

B) m=n and $a_{ij}=a_{ji}$ for all i,j

(C) $a_{ij} = a_{ij}$ for all i,j

D) m=n and a_{ij} = $-a_{ii}$ for all i,j

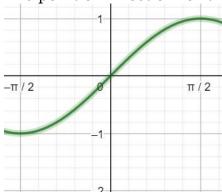
4. If $\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$ then the value of x is equal to

A) 2

B) 4

C) 8

D) $+2\sqrt{2}$.


5. Statement 1: Left hand derivative of f(x) = |x| at x = 0 is -1. Statement 2: Left hand derivative of f(x) at x = a is $\lim_{x \to a} f(a - h)$

- A) Statement 1 is true, and Statement 2 is false.
- B) Statement 1 is true, and Statement 2 is true, Statement 2 is correct Explanation for Statement 1
- C) Statement 1 is true, and Statement 2 is true, Statement 2 is not a correct Explanation for Statement 1
- D) Statement 1 is false, and Statement 2 is false.

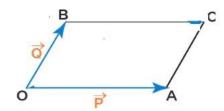
- **6.** The derivative of log(secx+tanx) with respect to x is
 - A)secx
- B) tanx
- C) secx.tanx
- **7.** The absolute maximum value of the function f given by

$$f(x) = x^3, x \in [-2, 2]$$
 is

- A)-2
- B)2
- C)0
- D)8
- **8.** The point of inflection for the following graph is

- A) $-\frac{\pi}{2}$
- B) $\frac{\pi}{2}$
- C) 0 D) point of inflection does not exist

- **9.** $\int e^x \left(\frac{1}{x} \frac{1}{x^2}\right) dx =$


- A) $e^{x} + c$ B) $\frac{e^{x}}{x^{2}} + c$ (C) $\frac{e^{x}}{x} + c$ (D) $\frac{-e^{x}}{x} + c$
- **10.** $\int x \sin x dx =$
 - A) $-x\cos x \sin x + c$

B) $x\cos x + \sin x + c$

C) $x\cos x - \sin x + c$

- D) $-\cos x \sin x + c$
- **11**. The projection vector of the vector \overrightarrow{AB} on the directed line l, if angle $\theta = \frac{\pi}{2}$ will be.
 - A) Zero vector.
- B) \overrightarrow{AB}
- C) \overrightarrow{BA}
- D) Unit vector.

12. For the given figure, $\vec{P} - \vec{Q}$ is

- A) \overrightarrow{OC}
- B) \overrightarrow{CO}
- C) \overrightarrow{BA}
- D) \overrightarrow{AB}

13 . The direction cosines of negative <i>z</i> -axis.										
	(A) -1, -1, 0	J		(D) 1, 1, 0						
14 . If $P(A) = \frac{1}{2}$, $P(B) = 0$, then $P(A B)$ is										
	A) 0	B) $\frac{1}{2}$	C) 1	D) not defined						
15 .	An urn contains 1	0 black and 5 wh	ite balls, 2 balls ar	e drawn						

- 15. An urn contains 10 black and 5 white balls, 2 balls are drawn one after the other without replacement, then the probability that both drawn balls are black is
 - A) $\frac{3}{7}$ B) $\frac{4}{9}$ C) $\frac{2}{3}$ D) $\frac{2}{9}$
- II. Fill in the blanks by choosing the appropriate answer from those given in the bracket (0, 1, 2, 3, 4, 5) $5 \times 1 = 5$
- **16.** The number of points in R for which the function f(x) = |x| + |x + 1| is not differentiable, is_____
- **17**. The value of $\hat{\imath}.(\hat{\jmath}\times\hat{k})-\hat{\jmath}.(\hat{k}\times\hat{\imath})-\hat{k}.(\hat{\jmath}\times\hat{\imath})$ is_____
- **18**. The sum of the order and degree of the differential equation. $2x^2 \left(\frac{d^2y}{dx^2}\right) 3\left(\frac{dy}{dx}\right) + y \quad is ____$
- **19**. The total revenue in rupees received from the sale of x unit of a product is given by $R(x)=2x^2-4x+5$, The marginal revenue when x=2 is
- **20**. If P(A) = $\frac{3}{k}$, P(A \cap B) = $\frac{2}{5}$ and P(B|A) = $\frac{2}{3}$, then k is _____

PART B

Answer any SIX questions:

 $6 \times 2 = 12$

- **21**. Show that $\sin^{-1}(2x\sqrt{1-x^2}) = 2\sin^{-1}(x), -\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$.
- **22**. Show that points A (a, b + c), B (b, c + a), C (c, a + b) are collinear using determinants.
- **23**. Find $\frac{dy}{dx}$, if $2x+3y=\sin x$.
- **24**. Find the local maximum value of the function $g(x) = x^3 3x$
- **25**. Evaluate $\int \sin 3x \cos 4x \ dx$.
- **26**. Find the general solution of the differential equation $\frac{ydx-xdy}{y}=0$.
- **27**. Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x} \vec{a}) \cdot (\vec{x} + \vec{a}) = 15$.

- **28**. Find the equation of the line in vector form that passes through the point with position vector $2\hat{i} \hat{j} + 4\hat{k}$ and is in the direction $\hat{i} + 2\hat{j} \hat{k}$.
- **29**. Prove that if E and F are independent events, then so are the events E and F'.

PART C

Answer any SIX questions:

 $6 \times 3 = 18.$

- **30**. Show that the relation R in the set of real numbers **R** defined as $R = \{(a,b) : a \le b\}$, is reflexive and transitive but not symmetric.
- **31.** Prove that $\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$.
- **32**. Express $\begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$ as the sum of a symmetric and a skew symmetric matrix.
- **33.** Find $\frac{dy}{dx}$ if $x = a(\cos\theta + \theta\sin\theta)$ and $y = a(\sin\theta \theta\cos\theta)$.
- **34.** Find the intervals in which the function $f(x)=(x-2)^3(x+4)^3$ is a) increasing b)decreasing.
- **35.** Find $\int \frac{x}{(x+1)(x+2)} dx$
- **36.** If \vec{a} , \vec{b} & \vec{c} are three vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$ and each vector is orthogonal to sum of the other two vectors then find $|\vec{a} + \vec{b} + \vec{c}|$.
- **37.** Find the distance between the lines $\vec{r} = 6\hat{\imath} + 2\hat{\jmath} + 2\hat{k} + \lambda (\hat{\imath} 2\hat{\jmath} + 2\hat{k})$ and $\vec{r} = -4\hat{\imath} \hat{k} + \mu (\hat{\imath} 2\hat{\jmath} 2\hat{k})$.
- **38.** Bag I contains 4 Red and 4 Black balls, Bag II contains 2 Red and 6 Black balls. One bag is selected at random and a ball is drawn is found to be Red. What is the probability that bag I is selected?

PART D

Answer any FOUR questions:

 $5 \times 4 = 20.$

- **39.** State whether the function $f: \mathbf{R} \to \mathbf{R}$ defined by f(x) = 3 4x is one-one, onto or bijective. Justify your answer.
- **40.** If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$, prove that $A^3 6A^2 + 7A + 2I = O$.
- **41**. Solve the following system of equations by matrix method: 2x + y z = 1; x + y = z and 2x + 3y + z = 11.
- **42**. If $y = 3\cos(\log x) + 4\sin(\log x)$, prove that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$.
- **43**. Find the integral of $\frac{1}{\sqrt{a^2-x^2}}$ with respect to x and evaluate $\int \frac{dx}{\sqrt{7-x^2}}$.

- **44**. Solve the differential equation $\frac{dy}{dx} + y \sec x = \tan x$ $(0 \le x \le \pi/2)$.
- **45**. Find the area of the circle $x^2 + y^2 = a^2$ by the method of integration.

PART E

Answer the following questions:

46. Maximize and Minimise; z = 3x + 9y subject to constraints $x+3y \le 60$, $x+y \ge 10$, $x \le y$, $x \ge 0$, $y \ge 0$ by graphical method.

Prove that
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx \text{ and hence evaluate } \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt{\tan x}} dx.$$

47. Find the value of k so that the function $f(x) = \begin{cases} kx+1, & \text{if } x \le 5 \\ 3x-5, & \text{if } x > 5 \end{cases}$, at x = 5 is a continuous function.

OR

If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$ then verify that $(AB)^{-1} = B^{-1}A^{-1}$.

4

PART F

(For Visually Challenged Students only)

8. The point of inflection of the function $f(x)=\sin x$ in the interval

$$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$$
 is

A)
$$-\frac{\pi}{2}$$

- A) $-\frac{\pi}{3}$ B) $\frac{\pi}{3}$ C) 0 D) point of inflection does not exist
- **12.** In a parallelogram OACB, $\overrightarrow{OA} = \overrightarrow{P}$ and $\overrightarrow{OB} = \overrightarrow{Q}$, then $\overrightarrow{P} \overrightarrow{Q}$ is
 - A) \overrightarrow{OC}
- B) \overrightarrow{CO} C) \overrightarrow{BA}
- D) \overrightarrow{AB}
