

GOVERNMENT OF KARNATAKA KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD WEIGHTAGE FRAMEWORK FOR MQP 3: II PU MATHEMATICS (35):2024-25

Chapter	CONTENT	Number of Teaching hours	PART A 1 mark		PART B 2 mark	PART C 3 mark	PART D 5 mark	PART E		Total
			MCQ	FB				6 mark	4 mark	
1	RELATIONS AND FUNCTIONS	9	1			1	1			9
2	INVERSE TRIGONOMETRIC FUNCTIONS	6	2		2					6
3	MATRICES	9	1	1	1		1			9
4	DETERMINANTS	12	1		1		1		1	12
5	CONTINUITY AND DIFFERENTIABILITY	20	2	1	1	1	1		1	17
6	APPLICATION OF DERIVATIVES	10	2	1	1	1				8
7	INTEGRALS	22	1	1	1	1	1	1		18
8	APPLICATION OF INTEGRALS	5					1			5
9	DIFFERENTIAL EQUATIONS	10	1		1		1			8
10	VECTOR ALGEBRA	11	2			2				8
11	THREE D GEOMETRY	8	1		1	1				6
12	LINEAR ROGRAMMING	7						1		6
13	PROBABILITY	11	1	1		2				8
	TOTAL	140	15	5	9	9	7	2	2	120

GOVERNMENT OF KARNATAKA KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD **Model Question Paper -3**

II P.U.C MATHEMATICS (35):2024-25

Time: 3 hours	Max. Marks : 80

Instructions:

The question paper has five parts namely A, B, C, D and E. Answer all the 1) parts.

PART A has 15 MCQ's ,5 Fill in the blanks of 1 mark each. 2)

Use the graph sheet for question on linear programming in PART E.

PART A

I. Answer ALL the Multiple Choice Questions

 $15 \times 1 = 15$

1. The element needed to be added to the relation $R=\{(1,1), (1,3), (2,2), (3,3)\}$ on

 $A = \{1, 2, 3\}$ so that the relation is neither symmetric nor transitive

A) (2, 3)

B) (3, 1)

C) (1, 2)

D) (3, 2)

2. The graph of the function $y = \cos^{-1} x$ is the mirror image of the graph of the function $y = \cos x$ along the line

A) x = 0

B) y = x

C) y = 1

D) y = 0

3. The value of $tan^{-1}(\sqrt{3}) + sec^{-1}(-2)$ is equal to

 $A) \pi$

B) $\frac{2\pi}{3}$ C) $-\frac{\pi}{3}$ D) $\frac{\pi}{3}$

4. If A and B are matrices of order 3×2 and 2×2 respectively, then which of the following are defined

A) AB

B) BA

 $C) A^2$

D) A + B

5. A square matrix A is invertible if A is

A) Null matrix

B) Singular matrix

C) skew symmetric matrix of order 3

D) Non-Singular matrix

6. If $y = \sin^{-1}(x\sqrt{x})$, then $\frac{dy}{dx} =$

A) $\frac{1}{\sqrt{1-x^3}}$ B) $\frac{2\sqrt{x}}{3\sqrt{1-x^3}}$ C) $\frac{3\sqrt{x}}{2\sqrt{1-x^3}}$ D) $\frac{-3\sqrt{x}}{2\sqrt{1-x^3}}$.

7. If $y = x^a + a^x + a^a$ for some fixed a > 0 and x > 0, then $\frac{dy}{dx} =$

(A) $ax^{a-1} + a^x \log a + aa^{a-1}$

B) $ax^{a-1} + a^x \log a$

C) $ax^{a-1} + xa^{x-1} + aa^{a-1}$

D) $ax^{a-1} + a^{x}\log a + a^{a}$.

	interval I and $c \in I$, at $x = c$									
	I. $f'(c) = 0$ and $f''(c) < 0 \Rightarrow$ f attains local maxima II. $f'(c) = 0$ and $f''(c) > 0 \Rightarrow$ f attains local minima III. $f'(c) = 0$ and $f''(c) = 0 \Rightarrow$ f attains both maxima and minima									
	A) I and II are tru	e	B) I and III are true							
	C) II and III are tr	rue	D) all are false							
9.	If each side of a cul	be is x units, then th	the rate of change of its surface area							
	with respect to side	th respect to side is								
	A) 12x	B) 6x	C) 6x ²	D) 3x ²						
10	10. Statement 1: The anti-derivative of $\left(\frac{1}{\sqrt{1+x^2}}\right)$ with respect to x is									
	$\frac{x}{2}\sqrt{1+x^2} + \frac{1}{2}\log x + \sqrt{1+x^2} + C.$									
	Statement 2: The d	erivative of $\frac{x}{2}\sqrt{1+x^2}$	$+\frac{1}{2}\log x+\sqrt{1+x} $	$ \overline{2} + C$						
		respect to x is $\frac{1}{\sqrt{1+x}}$		ı						
		true, and Statement								
		true, and Statement		ent 2 is correct						
	explanation for		,							
	C) Statement 1 is t	true, and Statement	2 is true, Statem	ent 2 is not a correct						
	explanation for									
	D) Both statement	s are false.								
11	The degree of the	differential equation	$\left(d^{2}y\right)^{3}+\left(dy\right)^{2}+ci$	$n^{(dy)} + 1 = 0$ is						
11			(411)	(411)						
	A) 2	B) 3	C) 5	D) not defined						
12	_	or of a point which di		points with position						
		d $\vec{a} + \vec{b}$ externally in the B) $4\vec{a} - \vec{b}$		D) 22 1 1						
	A) ${3}$	B) $4a - b$	C) $4b - a$	D) $2a + b$						
13	3. If a vector \vec{a} make:	s angles with $\frac{\pi}{}$ with	\hat{i} and $\frac{\pi}{}$ with \hat{i} a	and an acute						
13. If a vector \vec{a} makes angles with $\frac{\pi}{3}$ with \hat{i} and $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then θ is										
	A) $\frac{\pi}{6}$	B) $\frac{\pi}{4}$	C) $\frac{\pi}{3}$	D) $\frac{\pi}{2}$						
	6	4	. 3	. 2						
14 . Find the angle between the lines whose direction ratios are a , b , c and $b-c$, $c-a$, $a-b$ is										
	A) 45°	B) 30 ⁰	C) 60°	D) 90°						

8. Consider the following statements for the given function y=f(x) defined on an

15. If A and B are two independent events such that $P(A) = \frac{1}{4}$ and $P(B) = \frac{1}{2}$ then P(neither A nor B)

A) $\frac{1}{3}$

B) $\frac{3}{8}$

C) $\frac{7}{8}$

D) $\frac{1}{2}$.

- II. Fill in the blanks by choosing the appropriate answer from those given in the bracket (-2, $\frac{5}{2}$, 0, 1, 2, $\frac{3}{2}$) $5\times 1 = \frac{5}{2}$
- **16**. The number of all possible orders of matrices with 13 elements is _____
- **17**. If $y = 5 \cos x 3 \sin x$, then $\frac{d^2y}{dx^2} + y =$ _____
- **18**. If the function f given by $f(x) = x^2 + ax + 1$ is increasing on [1, 2], then the value of 'a' is greater than _____

19. $\int_{1}^{2} |x| dx =$ _____

20. If A and B are any two events such that P(A) + P(B) - P(A and B) = P(A), then $P(A \mid B)$ is_____

PART B

Answer any SIX questions

 $6 \times 2 = 12$

- **21**. Write the simplest form of $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)$, $0 < x < \pi$.
- **22.** Prove that $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$.
- **23**. If $F(x) = \begin{bmatrix} cosx & -sinx & 0 \\ sinx & cosx & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then show that F(x) F(y) = F(x + y).
- **24**. Find the equation of line joining (1, 2) and (3, 6) using determinants.
- **25**. Differentiate $x^{\sin x}$, x > 0 with respect to x.
- **26**. Find the intervals in which the function f given by $f(x) = x^2 e^{-x}$ is increasing.
- **27.** Find $\int (x^2 + 1) \log x \, dx$.
- **28.** Verify the function y = mx is the solution of $\frac{dy}{dx} y = 0$, $x \ne 0$.
- **29.** Find the distance between the lines $\vec{r} = \hat{\imath} + 2 \hat{\jmath} 4 \hat{k} + \lambda (2\hat{\imath} + 3 \hat{\jmath} + 6 \hat{k})$ and $\vec{r} = 3\hat{\imath} + 3\hat{\jmath} 5 \hat{k} + \mu(2\hat{\imath} + 3 \hat{\jmath} + 6 \hat{k})$.

Answer any SIX questions

 $6 \times 3 = 18$

- **30**. Let $f: X \to Y$ be a function. Define a relation R in X given by $R = \{(a, b): f(a) = f(b)\}$. Examine whether R is an equivalence relation or not.
- **31**. If $x^3 + x^2y + xy^2 + y^3 = 81$, then find $\frac{dy}{dx}$.
- **32**. The length x of a rectangle is decreasing at the rate of 3 cm/min and the width y is increasing at the rate of 2 cm/min. When x = 10 cm and y = 6 cm, find the rate of change of the perimeter of the rectangle.
- **33**. Find the integral of $\frac{1}{a^2 + x^2}$ with respect to x.
- **34**. If the vertices A, B and C of a triangle are (1,2,3), (-1,0,0) and (0,1,2) respectively, then find the angle $\angle ABC$.
- **35.** Find the area of the rectangle, whose vertices are $A\left(-\hat{i}+\frac{1}{2}\hat{j}+4k\right)$, $B\left(\hat{i}+\frac{1}{2}j+4k\right)$, $C\left(\hat{i}-\frac{1}{2}j+4k\right)$ and $D\left(-\hat{i}-\frac{1}{2}j+4k\right)$.
- **36.** Find the vector equation of the line passing through the point (1, 2, -4) and perpendicular to the two lines: $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$.
- **37**. An urn contains 5 red and 5 black balls. A ball is drawn at random, its colour is noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn are put in the urn and then a ball is drawn at random. What is the probability that the second ball is red.
- **38**. Three coins are tossed simultaneously. Consider the Event E 'three heads or three tails', F 'at least two heads and G 'at most two heads'. Of the pairs (E,F), (E, G) and (F, G), which are independent? Which are dependent? **PART D**

Answer any FOUR questions

 $4 \times 5 = 20$

- **39**. Let $f: \mathbb{N} \to \mathbb{Y}$ be a function defined as f(x) = 4x + 3, where, $Y = \{y \in \mathbb{N}: y = 4x + 3 \text{ for some } x \in \mathbb{N}\}$. Show that f is invertible. Find the inverse of f.
- **40.** If $A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$,

calculate AB, AC and A(B + C). Verify that A(B+C) = AB + AC.

41. Solve the following system of linear equations by matrix method:

$$2x + y + z = 1$$
, $x - 2y - z = \frac{3}{2}$ and $3y - 5z = 9$.

- **42.** If $x = a (\cos t + t \sin t)$ and $y = a (\sin t t \cos t)$, find $\frac{d^2y}{dx^2}$.
- **43.** Find $\int \frac{x^4}{(x-1)(x^2+1)} dx$
- **44**. Find the area of the region bounded by the line y = 3x + 2, the x-axis and the ordinates x = -1 and x = 1 by integration method.
- **45.** Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the ordinates of the point.

PART E

Answer the following questions:

46. (a) Prove that
$$\int_{-a}^{a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx, & \text{if } f(x) \text{ is even} \\ 0, & \text{if } f(x) \text{ is odd} \end{cases}$$

and evaluate
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^7 x \ dx$$

OR

Solve the following linear programming problem graphically: Minimize and maximize Z = x + 2y, subject to constraints

 $x + 2y \ge 100$, $2x - y \le 0$, $2x + y \le 200$ and $x, y \ge 0$.

$$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \end{bmatrix}$$
 satisfying A³-6A²+9A-4I=O, then evaluate A⁻¹.

47. If matrix
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 satisfying $A^3 - 6A^2 + 9A - 4I = O$, then evaluate A^{-1} .

If
$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x} \text{, } If \ x \neq \frac{\pi}{2} \\ 3, \quad if \ x = \frac{\pi}{2} \end{cases}$$
 is continuous at $x = \frac{\pi}{2}$, find k.

6