JENPAS UG 2025 Plant Physiology & Anatomy Questions and Solutions PDF | Question | Options | Correct
Answer | Step-by-Step Explanation | |---|---|-------------------|--| | Which pigment is primarily responsible for capturing light energy during the light-dependent reactions of photosynthesis? | a) Chlorophyll a
b) Chlorophyll b
c) Carotenoids
d) Xanthophyll | a | Step 1: Photosynthesis consists of both light-dependent and light-independent phases. Step 2: Chlorophyll a is the primary pigment in photosystems I and II, directly absorbing light for electron excitation. Step 3: Chlorophyll b and carotenoids are accessory pigments; xanthophyll is a carotenoid type. Thus, a is correct. | | In the Calvin cycle, which enzyme catalyses CO2 fixation with RuBP? | a) Rubisco
b) PEP
carboxylase
c) ATP synthase
d) Cytochrome
oxidase | а | Step 1: The Calvin cycle fixes CO2 into organic molecules. Step 2: Rubisco catalyses the reaction between CO2 and RuBP to form 3-PGA. Step 3: PEP carboxylase (C4 plants), ATP synthase (photophosphorylation), and cytochrome oxidase (respiration) are unrelated. Hence, a is correct. | | What is the primary function of stomata in transpiration? | a) Facilitate gas
exchange and
water vapour loss
b) Absorb soil
minerals
c) Store
carbohydrates
d) Provide
structural support | а | Step 1: Transpiration is water vapour loss from leaves. Step 2: Stomata allow CO2 entry and O2 exit for photosynthesis, enabling water vapour escape. Step 3: Options b, c, and d relate to roots, parenchyma, and collenchyma/sclerenchyma. Thus, a is correct. | | Which factor does
NOT directly
affect
transpiration rate? | a) Soil pH b) Humidity c) Wind speed d) Temperature | а | Step 1: Transpiration depends on environmental factors like vapour pressure. Step 2: Low humidity, high wind, and temperature increase evaporation. Step 3: Soil pH affects nutrient uptake indirectly, not transpiration. Hence, a is correct. | |--|---|---|---| | Meristematic tissues are characterised by which feature? | a) Thin-walled cells with active division b) Thick lignified walls c) Large vacuoles for storage d) Chloroplasts for photosynthesis | а | Step 1: Meristematic tissues drive plant growth. Step 2: They have thin cellulose walls, dense cytoplasm, and divide actively. Step 3: Options b, c, and d describe sclerenchyma, parenchyma, and chlorenchyma. Thus, a is correct. | | Which tissue transports water and minerals from roots to shoots? | a) Xylem
b) Phloem
c) Epidermis
d) Cortex | a | Step 1: Vascular tissues include xylem and phloem. Step 2: Xylem conducts water/minerals upward via transpiration pull. Step 3: Phloem transports nutrients; epidermis and cortex have other roles. Hence, a is correct. | | In C4 plants, initial CO2 fixation occurs in which cells? | a) Mesophyll cells
b) Bundle sheath
cells
c) Guard cells
d) Epidermal cells | а | Step 1: C4 photosynthesis minimises photorespiration. Step 2: CO2 is fixed into oxaloacetate in mesophyll cells by PEP carboxylase. Step 3: Bundle sheath cells host the Calvin cycle; guard/epidermal cells don't fix CO2. Thus, a is correct. | | Guttation in plants is primarily due to which phenomenon? | a) Root pressure
b) Transpiration
pull
c) Capillary action
d) Osmotic
diffusion | а | Step 1: Guttation is water exudation from leaf hydathodes. Step 2: It occurs under high humidity via root pressure. Step 3: Transpiration, capillary action, and osmosis are secondary mechanisms. Hence, a is correct. | |--|--|---|---| | Parenchyma
tissues can be
specialised for
which function? | a) Photosynthesis
in leaves
(chlorenchyma)
b) Water
conduction
c) Lignified support
d) Sieve tube
formation | а | Step 1: Parenchyma is a simple tissue with living cells. Step 2: Chlorenchyma (parenchyma with chloroplasts) performs photosynthesis. Step 3: Options b, c, and d describe xylem, sclerenchyma, and phloem. Thus, a is correct. | | Companion cells in phloem are primarily involved in: | a) Loading/unloading sugars b) Water conduction c) Gas exchange d) Cell division | a | Step 1: Phloem includes sieve tubes and companion cells. Step 2: Companion cells support sieve tubes by loading/unloading sucrose. Step 3: Options b, c, and d relate to xylem, stomata, and meristems. Hence, a is correct. | | During photosynthesis, water splitting (photolysis) occurs in which photosystem? | a) Photosystem II
b) Photosystem I
c) Calvin cycle
d) Electron
transport chain | а | Step 1: Light-dependent reactions involve photosystems I and II. Step 2: Photolysis in PSII provides electrons, releasing O2. Step 3: PSI reduces NADP+; Calvin cycle and ETC are separate. Thus, a is correct. | | Which is a pull factor in the cohesion-tension theory of transpiration? | a) Evaporation
from leaf surfaces
b) Active root
pumping
c) Soil water
potential
d) Guttation
pressure | а | Step 1: Cohesion-tension theory explains xylem water movement. Step 2: Leaf evaporation creates tension, pulling water up. Step 3: Root pressure, soil potential, and guttation are secondary. Hence, a is correct. | |--|---|---|---| | Collenchyma
tissues provide
flexible support in
which plant part? | a) Growing stems
and petioles
b) Mature woody
stems
c) Root
endodermis
d) Leaf veins only | а | Step 1: Collenchyma has unevenly thickened walls. Step 2: It supports young, growing stems and petioles. Step 3: Options b, c, and d describe sclerenchyma, endodermis, and vascular tissues. Thus, a is correct. | | Vessel elements in xylem differ from tracheids by: | a) Perforation plates for efficient flow b) Living cells with nuclei c) Sugar transport d) No secondary walls | a | Step 1: Xylem includes tracheids and vessels. Step 2: Vessels have perforation plates for faster water flow. Step 3: Both are dead; sugars via phloem; both have walls. Hence, a is correct. | | Phloem
translocation of
sugars follows
which principle? | a) Mass flow
hypothesis
b) Root pressure
ascent
c) Capillary rise
d) Active diffusion
only | а | Step 1: Phloem moves sugars from the source to the sink. Step 2: The Mass flow hypothesis involves pressure-driven sap movement. Step 3: Other options relate to xylem or minor mechanisms. Thus, a is correct. |