Chapters	Important Formulas
HCF & LCM	a×b = HCF (a,b) × LCM (a,b)
	For fractions: $HCF = \frac{HCF \text{ of numerators}}{LCM \text{ of denominators}}, LCM = \frac{LCM \text{ of numerators}}{HCF \text{ of denominators}}$
Factors	If $n=p_1^{a_1}\times p_2^{a_2}\times p_3^{a_3}\ldots$, then: Number of factors: $(a_1+1)(a_2+1)(a_3+1)\ldots$ Sum of factors: $(1+p_1+p_1^2+\cdots+p_1^{a_1})(1+p_2+\cdots+p_2^{a_2})\ldots$ Product of factors: $n^{(\mathrm{number of factors})/2}$
Remainders (Modulo Arithmetic)	 (a+b) mod m = [(a mod m) + (b mod m)] mod m (a-b) mod m = [(a mod m) -(b mod m)] mod m (a×b) mod m = [(a mod m) × (b mod m)] mod m
	Fermat's theorem: If ppp is prime and aaa not divisible by p, then $A^{p-1} \equiv 1 \pmod{p}$
	Euler's theorem: $a^{\phi(n)} \equiv 1 \pmod{n}$ where $\phi(n) = \text{Euler's totient function}$.
Euler's Totient Function	If $n=p_1^{a_1}p_2^{a_2}\dots$ $\phi(n)=n\left(1-rac{1}{p_1} ight)\left(1-rac{1}{p_2} ight)\dots$
Base System	Converting number from base b to decimal: $(d_kd_{k-1}\dots d_1d_0)_b=d_kb^k+d_{k-1}b^{k-1}+\dots+d_1b+d_0$
Properties of Numbers	 Even × Even = Even, Even × Odd = Even, Odd × Odd = Odd Even ± Even = Even, Odd ± Odd = Even, Even ± Odd = Odd
Sum of Series	First n natural number $\frac{n(n+1)}{2}$
	Sum of Squares $\frac{n(n+1)(2n+1)}{6}$

Sum of Cubes
$\left(\frac{n(n+1)}{2}\right)^2$