Andhra Pradesh State Council of Higher Education

Notations:

Is this Group for Examiner?:

1. Options shown in green color and with ✓ icon are correct.

2.Options shown in red color and with * icon are incorrect.

Electronics and Communication Engineering Question Paper Name: 28th Sep 2021 Shift1 **Duration:** 120 **Total Marks:** 120 **Display Marks:** No **Share Answer Key With Delivery Engine:** Yes Calculator: None **Magnifying Glass Required?:** No Ruler Required?: Nο **Eraser Required?:** No **Scratch Pad Required?:** No Rough Sketch/Notepad Required?: No **Protractor Required?:** No Show Watermark on Console?: Yes **Highlighter:** No Auto Save on Console? (SA type of questions will Yes be always auto saved):

No

Electronics and Communication Engineering

Section Id :	5875874	
Section Number :	1	
Mandatory or Optional :	Mandatory	
Number of Questions :	120	
Section Marks :	120	
Enable Mark as Answered Mark for Review and		
Clear Response :	Yes	
Question Number : 1 Question Id : 587587361 Displa	ay Question Number : Yes Is Question	
Mandatory : No		
Let L denote the inductance in henry (H) and C denote the cap reciprocal of the geometric mean of L and C has unit	CONTRACTOR	
Options:		
1. * hertz		
2. * radian		
3. * second		
4. ✓ radian per second		
Question Number : 2 Question Id : 587587362 Displa	ay Question Number : Yes Is Question	
Mandatory : No		
Suppose that the time-varying current through a capacitor of 9 μF	is $9\delta(t)$ microampere. The	
time-varying voltage across the capacitor is		
Options:		
1. * $9u(t)$		

2. 🗸 u(t)

- 3. **8** 81 u(t)
- 4. **1/9** u(t)

Question Number : 3 Question Id : 587587363 Display Question Number : Yes Is Question Mandatory : No

Suppose that three identical 9 A, 1 Ω Norton equivalent circuits are connected in parallel with like polarity. Then, the net current and conductance in the combined Norton equivalent circuit will be ------.

Options:

- 1 * 27 A, 1 mho
- 2 × 27 A, 3 mho
- 3. **8** 9 A, 1 mho
- 4. * 9 A, 3 mho

Question Number : 4 Question Id : 587587364 Display Question Number : Yes Is Question Mandatory : No

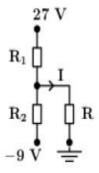
Suppose that a dc source with source resistance R_s could provide a current of 4 A when it is short circuited momentarily. Further, it can provide a power of 81 watts to a 9Ω load. The maximum power delivered to the load is ------.

- 1 / 108 watts
- 2. **×** 81 watts
- 3. **2**7 watts

4. **216** watts

Question Number : 5 Question Id : 587587365 Display Question Number : Yes Is Question Mandatory : No

Consider a series RLC circuit with Q factor 108. Suppose that all the R, L and C components values are quadrupled, the Q factor of the resultant circuit will be ------.


Options:

- 1 * 108
- 2. * 432
- 3.

 27
- 4. * 54

Question Number : 6 Question Id : 587587366 Display Question Number : Yes Is Question Mandatory : No

Refer to the circuit diagram shown below. In it, $R_1 = R_2 = 10^6 \Omega$ and $I = 9 \mu A$. The resistance R is equal to ------

- 1. × 100 KΩ
- 2. × 200 KΩ

3. **×** 400 KΩ

4. **▼** 500 KΩ

Question Number : 7 Question Id : 587587367 Display Question Number : Yes Is Question

Mandatory: No

Suppose that the Z-parameter matrices of two two-port network are $\begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$ and $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. If the two-port networks are connected in series, the admittance parameters matrix of the overall two-port network is ----.

Options:

$$\begin{bmatrix} 2/9 & 1/9 \\ -1/9 & 2/9 \end{bmatrix}$$

$$\begin{bmatrix} 2/9 & -1/9 \\ -1/9 & 2/9 \end{bmatrix}$$

$$\begin{bmatrix} 1/9 & 2/9 \\ 2/9 & 1/9 \end{bmatrix}$$

$$\begin{bmatrix} 1/9 & -2/9 \\ -2/9 & 1/9 \end{bmatrix}$$

Question Number : 8 Question Id : 587587368 Display Question Number : Yes Is Question

Mandatory : No

Consider a circuit of sixteen branches and four nodes. Suppose that you use loop analysis to find currents. The number of independent loops is ------

Options:

1. * 12

- 2. * 20
- 3. 🗸 13
- 4. * 11

Question Number : 9 Question Id : 587587369 Display Question Number : Yes Is Question Mandatory : No

Suppose that a capacitor stores one microjoule of electrical potential energy. The amount of charge stored in it is 1 μ C. The capacitance is given by -----.

Options:

- 1. **×** 1 μF
- 2. **×** 2 μF
- 3. **✓** 0.5 µF
- 4. × 10 μF

Question Number : 10 Question Id : 587587370 Display Question Number : Yes Is Question Mandatory : No

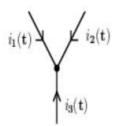
Suppose that the average power in a pure resistance that carries a time-varying current $i(t) = cos(\omega t)$ A, is 9 watt. The resistor is of -----

- 1. * 9 Ω
- 2. ✔ 18 Ω
- 3. ***** 3 Ω

4. * 81 Ω

Question Number : 11 Question Id : 587587371 Display Question Number : Yes Is Question

Mandatory: No


Consider a 9 V battery having negligible internal resistance is connected to a coil of inductance 4 H and resistance 1 Ω . The amount of energy stored in the magnetic field is ------

Options:

- 1. **8** 81 joules
- 2. × 9 joules
- 3. × 36 joules
- 4. 162 joule

Question Number : 12 Question Id : 587587372 Display Question Number : Yes Is Question Mandatory : No

The time-varying currents $i_1(t)$, $i_2(t)$, and $i_3(t)$ (in mA), are meeting at a junction as shown in the Fig. below. Suppose that $i_1(t) = 8\cos(\omega t)$, $i_2(t) = -9\sin(\omega t)$. The current $i_3(t)$ is given by ------

Options:

2. ***** 8-j9 mA

3. **≈** 8+j9 mA

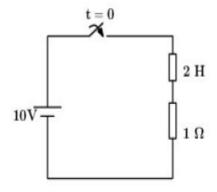
4. * -1+j0 mA

Question Number : 13 Question Id : 587587373 Display Question Number : Yes Is Question Mandatory : No

Suppose that a series resonant circuit has a resistance of 33 Ω , inductance of 1 H, and capacitance of 1 μ F. Let the supply voltage is 29.7 V. The current flowing through the circuit at resonance is ------

Options:

1. **×** 0.3 A

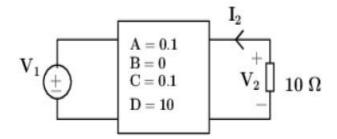

2. ***** 0.6 A

3. 🗸 0.9 A

4. ***** 3 A

Question Number : 14 Question Id : 587587374 Display Question Number : Yes Is Question Mandatory : No

Refer to the circuit shown below. Suppose that the switch closes at t = 0. The value of current at t = 2 second is approximately------.



Options:

0.63 A

Question Number : 15 Question Id : 587587375 Display Question Number : Yes Is Question Mandatory : No

Refer to the two-port network shown below. In it, the value of Z_{in} is equal to -----

Options:

$$1. \checkmark (1/11) \Omega$$

Question Number : 16 Question Id : 587587376 Display Question Number : Yes Is Question Mandatory : No

Suppose that the length of an intrinsic silicon bar is 5 cm and its cross-section is 2 mm by 4 mm. Assuming room temperature and resistivity equal to $2.4 \times 10^5 \Omega - cm$, the resistance of the bar is equal to ------

- 1. **×** 1.5 MΩ
- 2. **√**15 MΩ
- 3. **×** 150 MΩ
- 4. × 0.15 MΩ

Question Number : 17 Question Id : 587587377 Display Question Number : Yes Is Question Mandatory : No

Suppose that an electric field intensity of 1 volt/cm is applied across a semiconductor at a certain temperature. If the average drift velocity of free electrons is equal to 10 m/s, the electron mobility is equal to ------

Options:

- 1 × 10 cm²/V-sec.
- 2. * 100 cm²/V-sec.
- $3. * 0.1 \text{ cm}^2/\text{V-sec.}$
- 4 1000 cm²/V-sec.

Question Number : 18 Question Id : 587587378 Display Question Number : Yes Is Question Mandatory : No

The key purpose of the metallization process is to -----

- 1. * serve as a ground plane
- 2. * protect the chip from oxidation

3. v interconnect various circuit elements 4 * supply a bonding interface for mounting the chip Question Number: 19 Question Id: 587587379 Display Question Number: Yes Is Question Mandatory: No Compared to discrete component systems, monolithic integrated systems offer superior reliability. This is due to -----. **Options:** 1 * use of silicon 2 / fewer interconnections 3 * hermetically sealed 4 * reduction in size is achieved Question Number: 20 Question Id: 587587380 Display Question Number: Yes Is Question Mandatory: No Unlike BJT, the thermal runaway is not a problem in FET. The thermal stability in FET is because as temperature increases, ------**Options:** transconductance increases 2. mobility decreases 3. * mobility increases

Question Number : 21 Question Id : 587587381 Display Question Number : Yes Is Question

Mandatory: No

Which of the following is the basic material commonly used for the fabrication for an LED?

Options:

- 1 * SiC
- 2. * Ge
- 3. V GaAs
- 4. * SiO2

Question Number : 22 Question Id : 587587382 Display Question Number : Yes Is Question Mandatory : No

Suppose that a Si sample is doped with arsenic (As) atoms having concentration 10^{18} As atoms/cm³. The equilibrium hole concentration at room temperature is -----. (Note: Intrinsic concentration for Si at room temperature = 1.5×10^{10} cm⁻³.)

- 1. * $1.5 \times 10^2 \ cm^{-3}$
- $2. \times 0.15 \times 10^{2} \ cm^{-3}$
- $_{3.}$ \checkmark $2.25 \times 10^2 cm^{-3}$
- $_{4.}$ * 22.5 × 10² cm⁻³

Question Number: 23 Question Id: 587587383 Display Question Number: Yes Is Question

Mandatory : No

The duration it takes for an average electron to drift 2.7 μ m in pure Si at an electric field of 100 V/cm is ----- (Given: μ n = 1350 cm²/V-sec.)

Options:

- 1 * 1 ns
- 2. 2 ns
- 3. * 3 ns
- 4. * 4 ns

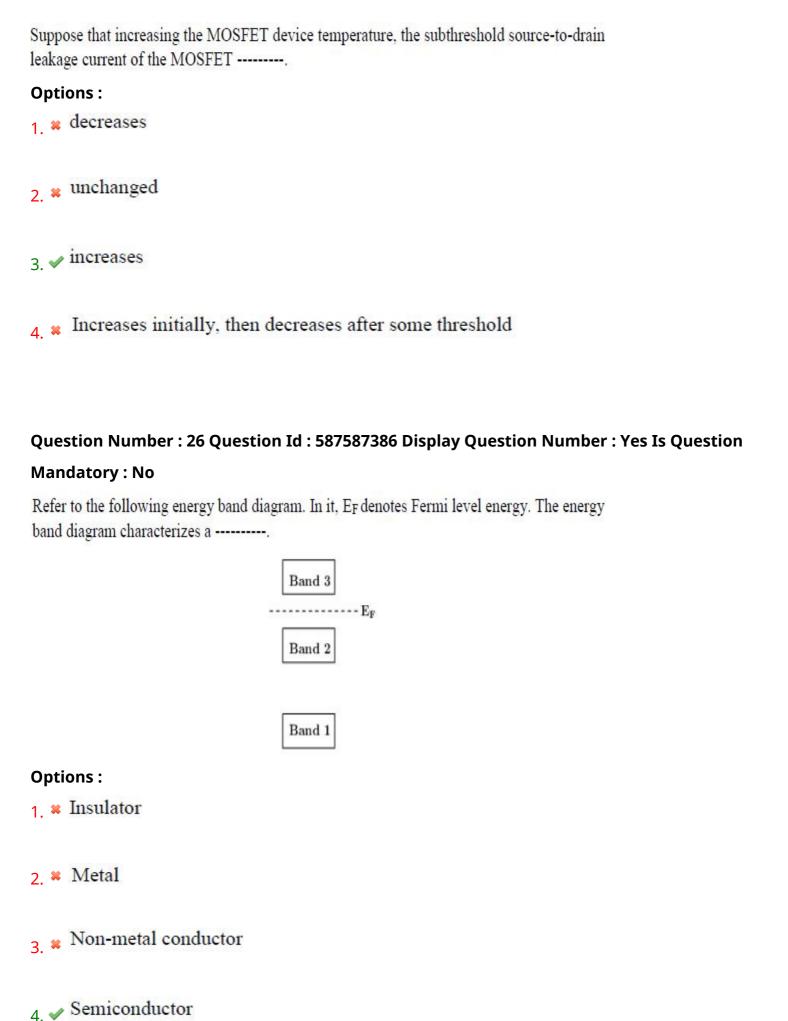
Question Number : 24 Question Id : 587587384 Display Question Number : Yes Is Question

Mandatory : No

Energy E (in eV), wavelength λ (in nm) of a photon are related through the expression given by ------

Options:

$$\lambda = \frac{0.00124}{E}$$


$$_{2.} * \lambda = \frac{_{1.24}}{_{E}}$$

$$\lambda = \frac{0.0124}{E}$$

$$_{4.}$$
 * $\lambda = \frac{12.4}{E}$

Question Number : 25 Question Id : 587587385 Display Question Number : Yes Is Question

Mandatory : No

Question Number: 27 Question Id: 587587387 Display Question Number: Yes Is Question

Mandatory : No

A 90 mW, 900 nm LASER beam is focused onto a GaAs sample of thickness 100μm. The energy of one photon is approximately equal to -----

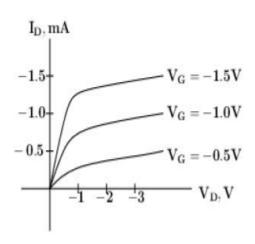
Options:

- 1. * 1.24 eV
- 2. 1.38 eV
- 3. * 0.62 eV
- 4. **2** 0.69 eV

Question Number : 28 Question Id : 587587388 Display Question Number : Yes Is Question Mandatory : No

Suppose that an abrupt Si p-n junction of area $10^{-8} \, m^{-2}$ and has n-side $\mu_p = 500 \, \mathrm{cm^2/V}$ -sec. at room temperature. For the minority carrier the diffusion constant (for holes) is approximately

Options:


- $1. \times 1.3 \text{ cm}^2/\text{sec}$
- 2. ***** 130 cm²/sec
- 3. 13 cm²/sec
- 4 * 26 cm²/sec

Question Number: 29 Question Id: 587587389 Display Question Number: Yes Is Question

Mandatory: No

Consider the MOSFET characteristic curves shown in Fig. The transconductance g_m (in mho)

at $V_D = -1.0 \text{ V is}$ -----.

Options:

1. × 0.5 millimho

2. ✓ 1 millimho

3. × 1.5 millimho

4. **2** 0.25 millimho

 ${\bf Question\ Number: 30\ Question\ Id: 587587390\ Display\ Question\ Number: Yes\ Is\ Question}$

Mandatory : No

Suppose that in the BJT characteristic curves $\Delta I_c = 5$ mA and $\Delta I_B = 0.1$ mA. The common emitter gain β is approximately equal to -----

Options:

1. * 100

2. 🗸 50

3. * 150

4. * 200

Question Number : 31 Question Id : 587587391 Display Question Number : Yes Is Question

Mandatory: No

--. (Use: $ln 9 \approx 2.3, V_T = 0.026 V$.)

Options:

Question Number : 32 Question Id : 587587392 Display Question Number : Yes Is Question Mandatory : No

Consider a Si diode ($\eta = 2$) operating in the conducting region at room temperature. The approximate change in voltage for a tenfold increase in current is ------

(Use: $I \approx I_0 e^{V/\eta V_T}$, $ln 10 \approx 2.3, V_T = 0.026 V$.)

Question Number: 33 Question Id: 587587393 Display Question Number: Yes Is Question

Mandatory: No

Suppose that two p-n Si diodes ($\eta = 2$) are connected in series opposing. In it, the reverse saturation current is 10 nA. A 6 V battery is connected to this series arrangement. If the Zener (Avalanche) voltage is 10 V, the voltage across the reverse bias diode is ------

(Use: $ln 2 \approx 0.693, V_T = 0.026 V$.)

Options:

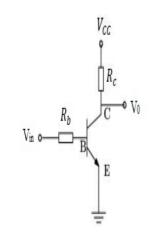
- 1. × 0.036 V
- 2. \$\square\$ 5.964 V
- 3. * 6 V
- 4. ***** 6.036 V

Question Number : 34 Question Id : 587587394 Display Question Number : Yes Is Question Mandatory : No

Suppose that a Si p-n diode is in series with a 2 K Ω resistor and 10 V power supply. If the diode is forward biased, the approximate current in the circuit is ------

(Assume $V_{\nu} = 0.6 V$.)

Options:


- 1 × 0.35 mA
- 2. * 5.65 mA
- 3. * 0 mA
- 4. 4.65 mA

Question Number: 35 Question Id: 587587395 Display Question Number: Yes Is Question

Mandatory: No

A Si transistor with $h_{FE}=100$ is used in the circuit shown. In it, $V_{CC}=10\,V$, $R_c=4.9\,K\Omega$, $V_{in}=5\,V$.

The maximum value of R_b for which the transistor remains in saturation is (Assume $V_{BE,Sat} = 0.6 \text{ V}$.)

Options:

1. ✓ 210 KΩ

2. × 21 KΩ

3. × 2.1 KΩ

4. × 2.1 MΩ

Question Number : 36 Question Id : 587587396 Display Question Number : Yes Is Question Mandatory : No

Suppose that A BJT has $\alpha=0.99$, $I_B=10~\mu A$, $I_{CBO}=100~nA$. The dc collector current is _______

Options:

1. **×** 10.1 mA

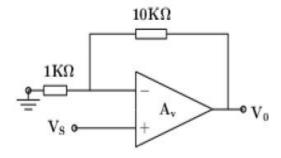
2. 1.10 mA

3. **×** 0.01 mA

4. ***** 101 μA

Question Number : 37 Question Id : 587587397 Display Question Number : Yes Is Question Mandatory : No

Consider a p-n diode whose internal resistance is 10 Ω . This diode is to supply power to a 900 Ω load from a $\frac{100}{\sqrt{2}}$ (rms) power supply. The dc load current is approximately -----.

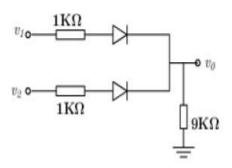

Options:

- 1. **320** mA
- 2. 🗸 32 mA
- 3. * 16 mA
- 4. × 0.32 μA

Question Number : 38 Question Id : 587587398 Display Question Number : Yes Is Question Mandatory : No

Refer to the Op-Amp circuit diagram shown. The voltage gain is equal to -----

(Given: open-loop gain = 99.)



- 1. * 99.9
- 2. * 9
- 3. 🗸 9.9

4. * 11

Question Number : 39 Question Id : 587587399 Display Question Number : Yes Is Question Mandatory : No

For the circuit shown in Fig., let $v_1 = 10 V$, $v_2 = 0 V$. Suppose that the p-n diode cut-in voltage is 0.6 V and the voltage drop across the conducting diode is 0.7 V. Assuming an infinite resistance for a diode which is reverse biased, the output v_0 is approximately-------

Options:

1. V 8.4 V

2. × 0.84 V

3. **×** 9.6 V

4. * 0.6 V

Question Number : 40 Question Id : 587587400 Display Question Number : Yes Is Question Mandatory : No

Consider a power supply that has no load voltage of 21.4 V. The approximate full load voltage for 7% regulation is approximately ------

Options:

1. * 10 V

2. 🗸 20 V

- 3. **×** 30 V
- 4. * 15 V

Question Number : 41 Question Id : 587587401 Display Question Number : Yes Is Question Mandatory : No

Consider a BJT operating in saturation region. Suppose that $V_{CC} = 9 V$, $R_C = x K\Omega$, $h_{FE} = 100$, $V_{\{CE,sat\}} = 0.3V$ The collector current at saturation is 17.4 mA. The resistance R_C is -----

Options:

- 1. \times 1 $K\Omega$
- $2. \times 2 K\Omega$
- $3. \checkmark 0.5 K\Omega$
- 4. ***** 3 KΩ

Question Number : 42 Question Id : 587587402 Display Question Number : Yes Is Question Mandatory : No

Suppose that a power amplifier has a power gain (in linear scale) of 128. The power gain in dB is approximately equal to ------

- 1. **×** 42 dB
- 2. 21 dB
- 3. ***** 7 dB

Question Number : 43 Question Id : 587587403 Display Question Number : Yes Is Question Mandatory : No

Consider FET Hartley oscillator with $C = 250 \ pF$, $L_{eq} = 4 \ mH$. The oscillation frequency is -----. (Use: $\frac{1}{2 \pi} \approx 0.16$.)

Options:

- 1 × 16 KHz
- 2. * 1.6 KHz
- 3. 160 KHz
- 4. * 1.6 MHz

Question Number : 44 Question Id : 587587404 Display Question Number : Yes Is Question Mandatory : No

For a JFET, g_{m0} denotes the transconductance at $V_{GS}=0$ V. Suppose that a JFET has $I_{DSS}=12$ mA, $V_p=-4$ V. The g_{m0} is equal to ------

- 1. * 3 millisiemen
- 2. **4** millisiemen
- 3. * 1 millisiemen
- 4. 4 6 millisiemen

Question Number: 45 Question Id: 587587405 Display Question Number: Yes Is Question Mandatory: No Suppose that $I_{DSS}=9~mA$, $V_p=-4~V$, $V_{GS}=-2~V$. The drain current I_D is equal to -----.

Options:

- 1. * 1.5 mA
- 2. * 3 mA
- 3. 2.25 mA
- 4. * 2 mA

Question Number : 46 Question Id : 587587406 Display Question Number : Yes Is Question Mandatory : No

Consider 8085 microprocessor instruction set. The XRA instruction word size is equal to -----

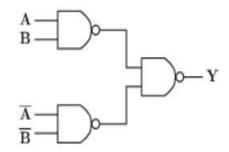
Options:

- 1. × 3 bytes
- 2. **2** bytes
- 3. **4** bytes
- 4. ✓ 1 byte

Question Number : 47 Question Id : 587587407 Display Question Number : Yes Is Question Mandatory : No

Consider the following 8085 instruction set. The number of times the loop will be executed is
LXI B, 0009H
LOOP: DCX B
JNZ LOOP
Options :
1. * 8
1. W 30
2. * 9
3. * 10
4. Infinite loop
Question Number : 48 Question Id : 587587408 Display Question Number : Yes Is Question
Mandatory : No
The number of address lines necessary to address two megabytes (i.e. 2048K) of memory is
Options :
1. * 11
2. * 10
3. ✓ 21
J. V ==
4. * 12
Ouestion Number : 49 Question Id : 587587409 Display Question Number : Yes Is Question

Mandatory : No

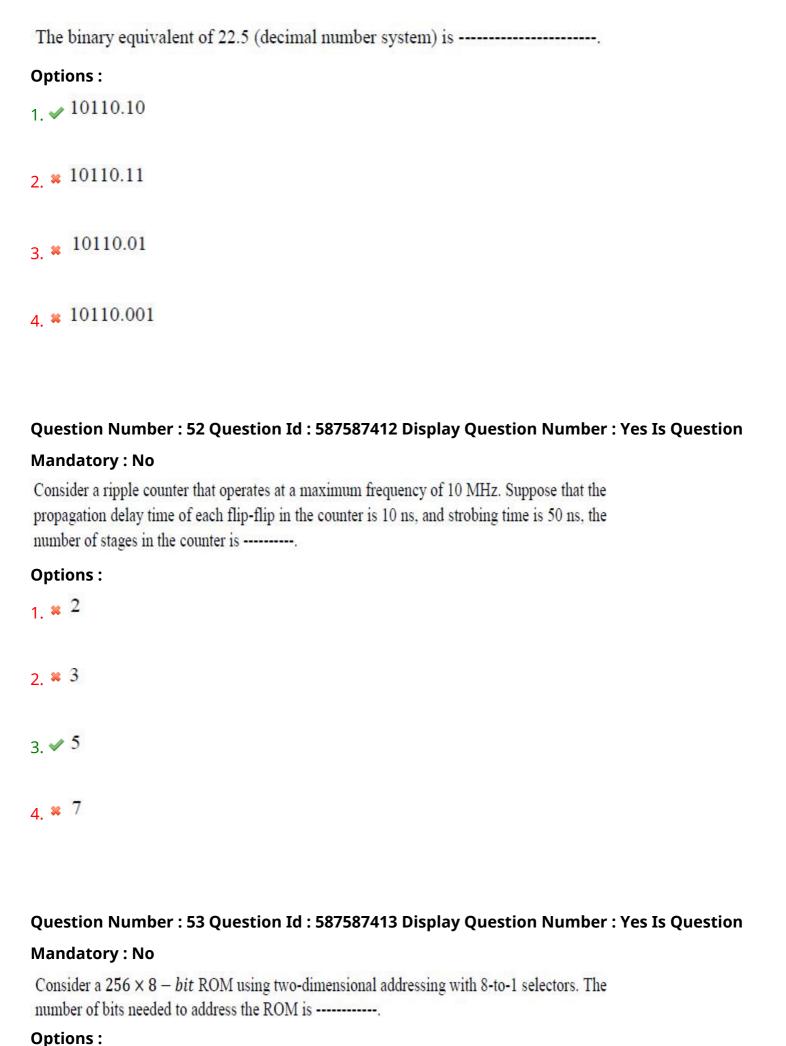

In 8085 microprocessors, if the clock frequency is 3 MHz, the time duration required to execute an instruction of 18 T-states is approximately ------.

Options:

- 1. **×** 0.6μs
- 2. **✓** 6µs
- 3. ***** 60µs
- 4. **×** 600μs

Question Number : 50 Question Id : 587587410 Display Question Number : Yes Is Question Mandatory : No

Refer to the digital logic circuit diagram shown. It performs ----- gate operation.



Options:

- 1. XNOR
- 2. VXOR
- 3. * NAND
- 4. NOR

Question Number : 51 Question Id : 587587411 Display Question Number : Yes Is Question

Mandatory: No

1. * 11

		100
_	0.0	O
,	-	1

Question Number : 54 Question Id : 587587414 Display Question Number : Yes Is Question Mandatory : No

Suppose that we need to design a 25:1 asynchronous counter. The number of flip-flops required is ------

Options:

Question Number : 55 Question Id : 587587415 Display Question Number : Yes Is Question Mandatory : No

Suppose that we need to design a multiplexer to generate the following combinational logic equation:

$$Y = \overline{D} \, \overline{C} \, \overline{B} \, \overline{A} + \overline{D} \, C \, B \, \overline{A} + D \, \overline{C} \, B \, \overline{A} + D \, \overline{C} \, \overline{B} \, A + \overline{D} \, \overline{C} \, B \, \overline{A} + D \, C \, \overline{B} \, \overline{A} + \overline{D} \, C \, \overline{B} \, A + D \, C \, B \, \overline{A}$$

The number of data inputs required is -----.

3. 🗸 8

4. * 32

Question Number : 56 Question Id : 587587416 Display Question Number : Yes Is Question Mandatory : No

Consider the following standard product of sums.

$$f(A,B,C) = (A + \bar{B} + C)(A + B + C)(A + \bar{B} + \bar{C}).$$

This can be simplified to -----.

Options:

 $1. \times \bar{A} + BC$

 $2 \ll A + \bar{B} C$

3. \times A + \bar{B} \bar{C}

 $4. \times \bar{A} + \bar{B} \bar{C}$

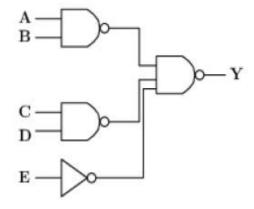
Question Number : 57 Question Id : 587587417 Display Question Number : Yes Is Question Mandatory : No

An 8-bit ADC is used to digitize an analog signal in the 0 to 5 V range. The maximum peak to peak ripple voltage that can be allowed in the dc supply voltage is approximately ------.

Options:

1. 20 mV

2. * 10 mV


3. * 5 mV

4. * 40 mV
Question Number : 58 Question Id : 587587418 Display Question Number : Yes Is Question
Mandatory : No
An 8-bit DAC provides an analog output which has a peak value of 5.12 volt. The resolution of the DAC is
Options:
1. * 40 mV
2. × 30 mV
3. * 15 mV
4. ✓ 20 mV
Question Number : 59 Question Id : 587587419 Display Question Number : Yes Is Question
Mandatory : No
The figure of merit of digital IC logic family is the product of
Options:
1. * noise margin and power dissipation
2. * bandwidth and gain
3. ✓ propagation delay and power dissipation
4. * propagation delay and fan-in

Question Number: 60 Question Id: 587587420 Display Question Number: Yes Is Question

Mandatory: No

For the digital logic circuit shown, the expression for Y is given by ------

Options:

$$AB + CD + E$$

2.
$$\times$$
 AB+CD \bar{E}

$$\bar{A} \times \bar{A} \bar{B} + CD + \bar{E}$$

$$AB + \overline{C}\overline{D} + E$$

Question Number : 61 Question Id : 587587421 Display Question Number : Yes Is Question Mandatory : No

Let $g(t) = \sum_{k=-\infty}^{\infty} \delta(t-kT)$, a periodic delta function with period T. The Fourier transform of g(t) denoted by G(f) is -----

1. *
$$(1/T) \sum_{\{k=-\infty\}}^{\{\infty\}} \delta(f-kT)$$

2.
$$\checkmark$$
 $(1/T) \sum_{\{k=-\infty\}}^{\{\infty\}} \delta(f - (k/T))$

3. *
$$\sum_{\{k=-\infty\}}^{\{\infty\}} \delta(f-(k/T))$$

$$\sum_{\{k=-\infty\}}^{\{\infty\}} \delta(f-KT)$$

Question Number : 62 Question Id : 587587422 Display Question Number : Yes Is Question Mandatory : No

The transfer function of a system is given by $H(f) = -2j \operatorname{sgn}(f)$ where 'sgn' denotes the signum function. Its impulse response is given by ------.

Options:

$$\frac{2}{\pi t}$$

Question Number : 63 Question Id : 587587423 Display Question Number : Yes Is Question Mandatory : No

The transfer function of a low pass filter in the interval $f \in (-0.5, 0.5)$ is given by

$$H(f) = \exp(-j \pi f).$$

What is the impulse response?

4. * sinc(t+1)

Question Number : 64 Question Id : 587587424 Display Question Number : Yes Is Question Mandatory : No

Two time-limited signals $g_1(t)$ and $g_2(t)$ are defined in the interval [1, 3], and [5, 7], respectively. Then, the convolution of the two signals is zero except for ------

Options:

1
$$\times$$
 1 < t < 7

$$2. \checkmark 6 < t < 10$$

$$4 \times 3 < t < 5$$

Question Number : 65 Question Id : 587587425 Display Question Number : Yes Is Question Mandatory : No

Suppose that $g(t) = \delta(t)$. The pre-envelope of g(t) is given by ------

$$\int_{1.} \delta(t) + j(\frac{1}{t})$$

$$\delta(t) + j\left(\frac{1}{\pi t}\right)$$

3. *
$$\delta(t) - j(\frac{1}{\pi t})$$

4. *
$$\delta(t) - j(\frac{1}{t})$$

Question Number : 66 Question Id : 587587426 Display Question Number : Yes Is Question
Mandatory : No
Consider an exponentially damped sinusoidal signal $g(t) = exp(-t)sin t u(t)$,
where $u(t)$ is the unit step function. The area under $g(t)$ is equal to
Options :
1. * 0.25
2. 0.5
3. * 1
0.75
4. * 0.75
Question Number : 67 Question Id : 587587427 Display Question Number : Yes Is Question
Mandatory : No
The following is/are true regarding autocorrelation function (ACF) $R(\tau)$ of a real-valued energy signal $g(t)$:
Options :
$R(\tau)$ is an even function of τ .
2. * $R(\tau)$ at $\tau = 0$ denotes the area under the energy spectral density (ESD).
3. * ACF and ESD form a Fourier transform pair.
3. * 1101 and LoD form a rounce dansform pair.
All of the above options are true
4. ✓

Question Number : 68 Question Id : 587587428 Display Question Number : Yes Is Question Mandatory : No

The Z-transform of $2^n u[n]$, where u[n] is the unit step sequence, is given by -----

Options:

$$\frac{1}{1-2z^{-1}}, |z| < 2$$

$$2. \sqrt[4]{\frac{1}{1-2z^{-1}}}, |z| > 2$$

$$\frac{-1}{1-2z^{-1}}, |z| < 2$$

$$\frac{-1}{1-2z^{-1}}, |z| > 2$$

Question Number : 69 Question Id : 587587429 Display Question Number : Yes Is Question Mandatory : No

The Laplace transform of the two sided exponential decay exp(-|t|) is given by

Options:

$$1. \sqrt[8]{\frac{2}{1-s^2}}, -1 < Re(s) < 1$$

$$\frac{2}{1+s^2}$$
, $-1 < Re(s) < 1$

$$\frac{1}{1-s^2}$$
, $-1 < Re(s) < 1$

$$\frac{1}{4. * 1+s^2}$$
, $-1 < Re(s) < 1$

Question Number : 70 Question Id : 587587430 Display Question Number : Yes Is Question Mandatory : No

Consider the impulse responses $h_1(t) = \delta(t - 0.5)$ and $h_2(t) = \delta(t + 0.5)$ of two systems. Suppose that the systems are connected in cascade. The impulse response of the overall system is given by ------

Options:

$$h_{eq}(t) = \delta(t+1)$$

$$h_{eq}(t) = \delta(t - 0.5)$$

$$h_{eq}(t) = \delta(t)$$

$$_{4.} * h_{eq}(t) = \delta(t-1)$$

Question Number : 71 Question Id : 587587431 Display Question Number : Yes Is Question

Mandatory : No

Integrating a unit step function twice results in a -----.

Options:

- 1. * unit ramp function
- 2. * unit delta function
- 3. w unit parabolic function
- 4. * unit doublet function

Question Number : 72 Question Id : 587587432 Display Question Number : Yes Is Question

Mandatory : No

A unity feedback system has transfer function G(s) = 16/(s(s+4)). Its undamped natural frequency of oscillations is ------

- 1 * 16
- 2. 🗸 4

- 3. * 2
- 4. * 64

Question Number : 73 Question Id : 587587433 Display Question Number : Yes Is Question Mandatory : No

The unit impulse response of a system is given by $0.25 \exp(-0.25t)$. Its transfer function is given by -----.

Options:

- 1. × 1/(s+4)
- 2. $\sqrt{1/(1+4s)}$
- 3. ***** 4/(4+s)
- 4. × 4/(1+4s)

Question Number : 74 Question Id : 587587434 Display Question Number : Yes Is Question Mandatory : No

The transfer function of a system is 9/(1+s). When operated as a unity feedback control system, the steady state error to a unit step input is equal to ------.

- 1. * 0
- 2. * Infinity
- 3. < 0.1
- 4. * 1/9

Question Number : 75 Question Id : 587587435 Display Question Number : Yes Is Question Mandatory : No

Consider the transfer function $GH = \frac{k(s+2)}{s^2(s+4)(s+9)}$. The bode gain is equal to -----

Options:

- 1. * k
- 2. V k/18
- 3. * 2 k
- 4. * 18k

Question Number : 76 Question Id : 587587436 Display Question Number : Yes Is Question Mandatory : No

Consider $GH = \frac{K}{s(s+2)^2}$. What value of K satisfies |GH(j2)| = 2?

Options:

$$1. \ |K| = 32$$

$$|K| = 16$$

Question Number : 77 Question Id : 587587437 Display Question Number : Yes Is Question

Mandatory: No

Suppose that $GH(j\omega) = \frac{2}{(j\omega+1)^3}$. The gain margin of the system is equal to	Suppose that	$GH(j\omega) =$	$\frac{2}{(i\omega+1)^3}$.	The gain	margin o	f the system	is equal t	0
--	--------------	-----------------	-----------------------------	----------	----------	--------------	------------	---

Options:

- 1. * 8
- 2. 🗸 4
- 3. * 2
- 4. * 16

Question Number : 78 Question Id : 587587438 Display Question Number : Yes Is Question Mandatory : No

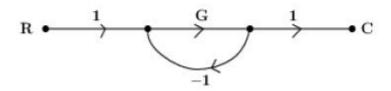
Suppose that $GH(j\omega) = \frac{1}{(j\omega+1)^3}$. The phase margin of the system is equal to -----

Options:

- 1. * 0 degree
- 2. 180 degrees
- 3 × 90 degrees
- 4 × 45 degrees

Question Number : 79 Question Id : 587587439 Display Question Number : Yes Is Question Mandatory : No

Consider the transfer function $\frac{4}{5+2s+s^2}$. The resonant peak is equal to -----


2. * 1.25

3. * 0.8

4. * 0.25

Question Number : 80 Question Id : 587587440 Display Question Number : Yes Is Question Mandatory : No

Refer to the signal flow graph show. The transfer function is -----

Options:

1. * 1+G

$$\frac{1}{1+G}$$

3. **×** 1-G

Question Number : 81 Question Id : 587587441 Display Question Number : Yes Is Question Mandatory : No

The unit of amplitude sensitivity Ka in amplitude modulation (AM) is ------.

Options:

1. * volt

- 2. * volt square
- 3. **volt**-1
- 4. * volt-ampere

Question Number : 82 Question Id : 587587442 Display Question Number : Yes Is Question Mandatory : No

Consider amplitude modulation (AM). In an AM system, the maximum amplitude of the modulated signal is four times to its minimum amplitude. Then, the modulation index, is equal to ------

Options:

- 1. * 0.3
- 2. \$\square 0.6
- 3 * 0.4
- 4. * 0.5

Question Number : 83 Question Id : 587587443 Display Question Number : Yes Is Question Mandatory : No

The range of carrier frequency in frequency modulation (FM) based radio broadcasting is -----

- 1. × 535—1635 KHz
- 2. **№** 88—108 MHz
- 3. **8** 824—849 MHz

1	38	2.4	— 5.	8	GHz
---	----	-----	-------------	---	------------

Question Number : 84 Question Id : 587587444 Display Question Number : Yes Is Question Mandatory : No

A superheterodyne receiver (SHRX) with an IF of 450 KHz is tuned to an incoming signal frequency 1200 KHz. The image frequency is ------

Options:

- 1 ¥ 900 KHz
- 2. * 750 KHz
- 3. * 1650 KHz
- 4. 2100 KHz

Question Number : 85 Question Id : 587587445 Display Question Number : Yes Is Question Mandatory : No

A tuned circuit resonates at 1 MHz. It has a quality factor of 100. Bandwidth between half-power points is ------.

- 1. 10 KHz
- 2. × 100 KHz
- 3. **×** 100 Hz
- 4. * 1 MHz

Question Number: 86 Question Id: 587587446 Display Question Number: Yes Is Question

Mandatory: No

Which one of the following subsystem is NOT common in both FM and AM superheterodyne receivers?

Options:

- 1. * RF amplifier
- 2. * Mixer
- 3. * IF amplifier
- 4. Slope detector

Question Number : 87 Question Id : 587587447 Display Question Number : Yes Is Question Mandatory : No

A random variable (RV) Y has probability density function (pdf) given by $p_Y(y) = a \exp(-by), y \ge 0$, where a and b are constants. The relationship between a and b is ------

Options:

$$a = 2b$$

$$2. \checkmark a = b$$

$$a = 0.5b$$

$$b = 0.25a$$

Question Number : 88 Question Id : 587587448 Display Question Number : Yes Is Question Mandatory : No

A WSS random process X(t) whose mean value is 1, is applied to the input of an LTI system with impulse response $h(t) = exp(-\pi t^2)$, $t \in R$. The mean value of output Y(t) of the system is equal to ------

Options:

- 1. 🗸 1
- 2. * 0.5
- 3. * 2
- 4. * 0.25

Question Number : 89 Question Id : 587587449 Display Question Number : Yes Is Question Mandatory : No

Suppose that $R = 10^4 \Omega$, $T = 20^0 C$, and the bandwidth of observation is 1 MHz. What is the approximate value of root mean square (RMS) noise voltage?

(Note: Boltzmann's constant $K = 1.38 \times 10^{-23}$ joules per degree Kelvin.)

Options:

- 1. × 127 microvolts
- 2. * 12.7 millivolt
- 3 12.7 microvolt
- 4 × 12.7 nanovolt

Question Number : 90 Question Id : 587587450 Display Question Number : Yes Is Question Mandatory : No

In a PCM system, uniform quantization is used. In it, each quantization level is encoded into 9 bits. The signal to quantization noise ratio is approximately equal to ------

Options:

1. **×** 24 dB

Question Number : 91 Question Id : 587587451 Display Question Number : Yes Is Question Mandatory : No

Let m(t) = bt, where 'b' is a positive constant. The signal m(t) is applied to a delta modulator with sampling duration T_s and step size δ . Slope-overload distortion occurs when ------

Options:

1.
$$\checkmark \delta < b T_s$$

$$2. \times \delta < b$$

$$3. \times \delta > b T_s$$

4.
$$\delta > b$$

Question Number : 92 Question Id : 587587452 Display Question Number : Yes Is Question Mandatory : No

Four message signals each band-limited to 2.5 KHz are sampled at Nyquist rate. The resulting PAM samples are pulse code modulated and transmitted over a single channel after TDM. The number of quantization levels used is 512. The bit rate of the system is equal to ------

- 3. * 1 Mbps
- 4. * 1.8 Mbps

Question Number : 93 Question Id : 587587453 Display Question Number : Yes Is Question Mandatory : No

A continuous-time signal has voltage range -2 V to 2 V. The signal is sampled uniformly at Nyquist rate and uniformly quantized. If each quantization level is encoded to 8 bits per sample, the resulting signal have -------

Options:

- 1. * 256 levels of step size 1/128
- 2. * 128 levels of step size 1/64
- 3. 256 levels of step size 1/64
- 4 * 256 levels of step size 1/256

Question Number : 94 Question Id : 587587454 Display Question Number : Yes Is Question Mandatory : No

Consider the transmission of binary PAM data over a baseband channel. The transmission bandwidth requirement is 72.0 KHz. Suppose that the transmitter uses raised cosine pulse shaping filter with roll-off factor β . Furthermore, the Nyquist bandwidth is equal to $\frac{1}{2T_b}$, where T_b denotes the bit duration. If the bit duration is 10 microseconds, β will be equal to -----

- 1. * 0.11
- 2.

 0.44
- 3. * 0.22

		0	00
4	-00	()	XX
4	-	v.	88

Question Number : 95 Question Id : 587587455 Display Question Number : Yes Is Question Mandatory : No

Consider a wideband FM receiver. When the modulation index is 5, the figure of merit of the FM receiver is equal to ------.

Options:

- 1. * 3.75
- 2. 4 37.5
- 3. * 1.5
- 4. * 75

Question Number : 96 Question Id : 587587456 Display Question Number : Yes Is Question Mandatory : No

Which of the following modulation scheme was used in the second generation narrowband digital cellular standard GSM?

- 1 * Frequency shift keying
- 2. * Phase shift keying
- 3. W On-off keying
- 4. Gaussian minimum shift keying

Question Number: 97 Question Id: 587587457 Display Question Number: Yes Is Question

Mandatory : No

What is the approximate information capacity of the telephone channel when the received SNR is 30 dB and the channel bandwidth equal to 20 KHz? Assume AWGN channel.

Options:

Question Number : 98 Question Id : 587587458 Display Question Number : Yes Is Question Mandatory : No

A communication system uses FSK transmitter (Tx) and coherent FSK receiver. The Tx transmits binary data at 2.5 Mbps using a sinusoidal carrier having amplitude 1 microvolt. Assuming AWGN channel with two-sided PSD equal to 10^{-20} W/Hz, the average probability of bit error is equal to ------. (Note: erfc(.) denotes the complementary function.)

$$1 \checkmark \frac{erfc(\sqrt{5})}{2}$$

$$\frac{erfc(\sqrt{10})}{2}$$

$$\frac{erfc(\sqrt{20})}{2}$$

Question Number : 99 Question Id : 587587459 Display Question Number : Yes Is Question Mandatory : No

Suppose that a Direct sequence CDMA system has information bit rate of 1.8 Kbps and chip rate of 360 kbps. The processing gain in dB is approximately equal to ------

(Use: $log_{10}(2) = 0.3010$.)

Options:

- 1. * 13 dB
- 2. 23 dB
- 3. * 33 dB
- 4. * 26 dB

Question Number : 100 Question Id : 587587460 Display Question Number : Yes Is Question Mandatory : No

Consider the figure of merit (FoM) of single tone AM and wideband FM receivers. If the FoM of wideband FM is 72 times to the FoM of AM with 100% modulation, the modulation index of FM is ------.

Options:

- 1. * 2
- 2. * 4
- 3. * 6
- 4. 🗸 8

Question Number: 101 Question Id: 587587461 Display Question Number: Yes Is Question

Mandatory: No

Consider a z- polarized electromagnetic wave propagation in vacuum, which is characterized by the following:

$$E = E_0 \exp\{j (\omega t - 30 x + 40 y)\} \hat{z}.$$

The wavelength of the wave is ----- (Assume SI units)

Options:

$$2. \checkmark \frac{\pi}{25}$$

$$\frac{\pi}{125}$$

$$4. \stackrel{\pi}{\approx} 50$$

Question Number : 102 Question Id : 587587462 Display Question Number : Yes Is Question Mandatory : No

Consider a 90 watt lamp. The intensity (in watt/m²) at a distance 1 meter is approximately ----- (use: $\frac{1}{2\pi} \approx 0.16$.)

Mandatory: No

For copper, assume conductivity of 60×10^6 mho/m and $\mu \approx \mu_0$. The skin depth at 0.1 GHz is approximately -----. (use: $\frac{1}{2\pi} \approx 0.16$ and $\frac{1}{\sqrt{6}} \approx 0.4$.)

Options:

- $1. \approx 64 \mu m$
- $2. \checkmark 6.4 \mu m$
- $3. * 0.64 \mu m$
- 4 × 0.064 μm

Question Number : 104 Question Id : 587587464 Display Question Number : Yes Is Question Mandatory : No

Suppose that for the glass-air interface, $n_1 = 1.5$, $n_2 = 1$. The critical angle (in degrees) is approximately------

Options:

- 1. × 62°
- 2. × 72°
- 3. × 82°
- 4. **42°**

Question Number : 105 Question Id : 587587465 Display Question Number : Yes Is Question Mandatory : No

Suppose that a quarter-wave transformer has input impedance, denoted by Z_{in} . It has characteristic impedance of 150 Ω . If the quarter-wave transformer is matching a $Z_{in} \Omega$ source with a 300 Ω load, Z_{in} is ------

Options:

- 1 * 50 Ω
- 2. ✔ 75 Ω
- 3. **×** 100 Ω
- 4. * 300 Ω

Question Number : 106 Question Id : 587587466 Display Question Number : Yes Is Question Mandatory : No

Suppose that the velocity of an electromagnetic wave in free space is 3×10^8 m/s. Further, the velocity in a medium with $\mu_r = 4$ is 3×10^8 m/s. The relative permittivity ϵ_r is equal to ------

Options:

- 1 * 4.5
- 2. * 4
- 3. 🗸 2.25
- 4. * 2.5

Question Number : 107 Question Id : 587587467 Display Question Number : Yes Is Question Mandatory : No

Suppose that VSWR is 1.25. Then, the magnitude of the reflection coefficient is ------.

- 1. * 1/3
- 2. 🗸 1/9

- 3. * 2/3
- 4. * 2/9

Question Number : 108 Question Id : 587587468 Display Question Number : Yes Is Question Mandatory : No

Suppose that the cutoff frequency of a rectangular waveguide in dominant mode is 4.5 GHz. The width of the waveguide is approximately ------

Options:

- 1 * 33.3 cm
- 2. **3.33** cm
- 3 * 6.6 m
- 4. * 0.66 m

Question Number : 109 Question Id : 587587469 Display Question Number : Yes Is Question Mandatory : No

Consider the boundary between free space and glass. If a uniform plane wave with E_m = 0.9 volt/m and frequency 180 MHz is incident from free space normal to the glass ($\eta_2 \approx 0.5 \, \eta_1$), the reflection and transmission coefficients, respectively, are ------. (Assume η_1 = 120 π Ω .)

- 1. * -1/9, 8/9
- 2. * -1/6, 5/6
- 3. -1/3, 2/3

4. * -2/3, 1/3

Question Number : 110 Question Id : 587587470 Display Question Number : Yes Is Question Mandatory : No

Consider a uniform plane wave of frequency 270 MHz travelling in an infinite, lossless medium having $\varepsilon_r = 4.5$, $\mu_r = 2$, and $\sigma = 0$. The intrinsic impedance is ------

Options:

- $1. \times 8\pi$
- $2. < 80\pi$
- $3. \times 240\pi$
- 4. * 60π

Question Number : 111 Question Id : 587587471 Display Question Number : Yes Is Question Mandatory : No

Let
$$A = \begin{bmatrix} -2 & 6 \\ -2 & 5 \end{bmatrix}$$
. The eigen values of $A^{-5} = (A^{-1})^5$ are

- 1 1/32, 1
- 2. * 1/2,2
- 3. * 32,1
- 4. * 16, 4

Question Number: 112 Question Id: 587587472 Display Question Number: Yes Is Question

Mandatory: No

The function f(x,y) = x + y has absolute maximum on curve $x^2 + y^2 = 4$, $y \ge 0$ at

Options:

- 1 * (2,0)
- 2. * (-2,0)
- 3. * (0,2)
- $_{4}$ \checkmark $(\sqrt{2},\sqrt{2})$

Question Number : 113 Question Id : 587587473 Display Question Number : Yes Is Question Mandatory : No

Flux of F = 4xz $i - y^2$ j + yz k outward through the surface of the cube from the first octant by the planes x = 1, y = 1, z = 1 is

Options:

- 1. * 1
- 2. * 0
- 3. 🗸 1.5
- 4. * 4

Question Number : 114 Question Id : 587587474 Display Question Number : Yes Is Question

Mandatory: No

$$\int_0^2 \int_{x^2}^{2x} f(x, y) \, dy \, dx$$
 is equal to

$$\int_0^4 \int_{y/2}^{\sqrt{y}} f(x,y) \, dx \, dy$$

$$\int_{0}^{4} \int_{\sqrt{y}}^{y/2} f(x, y) \, dx \, dy$$

$$\int_{0}^{4} \int_{-\sqrt{y}}^{y/2} f(x, y) \, dx \, dy$$

$$\int_0^4 \int_{-\sqrt{y}}^y f(x,y) \, dx \, dy$$

Question Number : 115 Question Id : 587587475 Display Question Number : Yes Is Question Mandatory : No

The solution of the initial value problem $4\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 3y = 0$; $y(0) = 2, \frac{dy}{dx}(0) = \frac{1}{2}$ is

Options:

$$\int_{1.}^{1} e^{\frac{3}{2}x} + \frac{5}{2}e^{\frac{1}{2}x}$$

$$\frac{1}{2}e^{\frac{3}{2}x} + \frac{5}{2}e^{\frac{1}{2}x}$$

$$\frac{1}{2}e^{\frac{3}{2}x} - \frac{5}{2}e^{\frac{1}{2}x}$$

$$_{4.} = -e^{\frac{3}{2}x} + e^{\frac{1}{2}x}$$

Question Number : 116 Question Id : 587587476 Display Question Number : Yes Is Question Mandatory : No

The general solution of $\frac{dy}{dx} + \frac{2x+1}{x} y = e^{-2x}$ is

1. *
$$\frac{1}{2}e^{-2x} + \frac{c}{x}e^{-2x}$$

$$\int_{2.}^{1} xe^{-2x} + \frac{c}{x}e^{-2x}$$

3. *
$$\frac{1}{2}e^{-2x}$$

$$\frac{1}{2} + \frac{c}{x}e^{-2x}$$

Question Number : 117 Question Id : 587587477 Display Question Number : Yes Is Question Mandatory : No

While watching IPL, you observe someone who is clearly supporting CSK (Chennai super kings) in the game. Assume that the probability that a randomly selected person in a typical local environment is born with in 150 km of Chennai is 0.05, and the chance that a person born with in 150 km of Chennai actually supports CSK is 0.7, the probability that a person not born with in 150 km of Chennai supports CSK with probability 0.1. Probability that supporters of CSK were actually born with in 150 km of Chennai is

Options:

$$\sqrt{\frac{7}{26}}$$

Question Number : 118 Question Id : 587587478 Display Question Number : Yes Is Question Mandatory : No

Let X be normal with $\mu = 5$ and $\sigma = 0.2$. The value of C such that $P[X \le C] = 0.95$ is (use $\phi(1.645) = 0.95$ from the cumulative distribution table for standard normal variable)

Options:

- 1 * 4.25
- 2. * 0.56
- 3. \$\square 5.329
- 4. * 8.25

Question Number : 119 Question Id : 587587479 Display Question Number : Yes Is Question Mandatory : No

Let $f(z) = \frac{1}{z(z-2)^4}$ and C: |z-2| = 1. The value of $\int_C f(z) dz$ is

Options:

- 1. ³⁶ πi 8
- 2. ***** πi
- $\frac{\pi i}{4}$
- $4 \checkmark -\frac{\pi i}{8}$

Question Number : 120 Question Id : 587587480 Display Question Number : Yes Is Question Mandatory : No

Consider $3\frac{dy}{dx} + \sqrt{y} = e^{0.1x}$; y(0.3) = 5. The value of y(0.6) using Euler's method with step size h = 0.3 is

- 1. * 4.5605
- 2. 🗸 4.8794
- 3. * 4.2501
- 4. * 4.1464