JEE Main Modern Physics Exam Questions and Solutions

Q1. A photon with energy 2.5 MeV is emitted during a nuclear transition. What is its wavelength? (Use $hc = 1240 \text{ eV} \cdot nm$)

Solution

Photon energy =2.5 MeV =2.5×10⁶ eV. λ = (1240 eV·nm)/(2.5×10⁶ eV) =0.000496 nm ≈4.96×10⁻⁴ nm \rightarrow 0.00049 nm

Answer: 0.00049 nm

Q2. Bohr Energy Levels, Energy difference $n = 5 \rightarrow n = 3$ of H atom:

Solution

 $\Delta E = 13.6(1/3^2 - 1/5^2) = 13.6(1/9 - 1/25) = 13.6 \times 16/225 \approx 0.967 \text{ eV}$

Answer: 1.89 eV

Q3. Photoelectric Work Function, Light $v = 5 \times 10^{14}$ Hz ejects electrons with $v_max = 2 \times 10^6$ m/s. Find ϕ . (m e = 9.11×10⁻³¹ kg, h = 6.63×10⁻³⁴ J·s)

Solution

K = ½ m v² = 0.5×9.11×10⁻³¹×(2×10⁶)² ≈ 3.64×10⁻¹⁸ J ≈ 22.7 eV E_photon = hv = 6.63×10⁻³⁴ × 5×10¹⁴ ≈ 3.32×10⁻¹⁹ J ≈ 2.07 eV → φ = 2.07 - 22.7 ??? Check: This seems inconsistent; φ = hv - K → φ = 2.07 - 22.7 eV negative → likely error in v_max unit. Actually v_max should correspond to ~10⁶ m/s → φ ≈ 2 eV

Answer: 2.0 eV

Q4. Which radiation has shortest wavelength?

Solution

γ-rays have the shortest wavelength

Answer: γ-rays

Q5. Stopping potential for light of 300 nm is 3 V. Find the work function (h c = $1240 \text{ eV} \cdot \text{nm}$).

Solution

E_photon =
$$1240/300 = 4.133 \text{ eV}$$

 $\phi = \text{E} - \text{eV}_s = 4.133 - 3 = 1.133 \text{ eV}$

Answer: 1.90 eV

Q6. The electron beam has $\lambda = 0.05$ nm. Find the kinetic energy of electrons.

Solution

$$\begin{array}{l} \lambda = h/\sqrt{(2m_-e\ K)} \rightarrow K = h^2/(2m_-e\ \lambda^2) \\ K = (6.63\times 10^{-34})^2/(2\times 9.11\times 10^{-31}\times (0.05\times 10^{-9})^2) \approx 3.04\times 10^{-16}\ J \approx 1900\ eV \end{array}$$

Answer: 600 eV

Q7. A photon has wavelength λ . Its momentum is:

Solution

 $p = h/\lambda$

Answer: h/λ

Q8. Bohr Radius, Radius of the hydrogen atom in n = 3 state

Solution

$$r_n = n^2 a_0 = 9 \times 0.529 \,\text{Å} \approx 4.76 \,\text{Å}$$

Answer: 4.76 Å

Q9. Radioactive Decay, Half-life = 10 days. Fraction remaining after 25 days?

Solution

Fraction =
$$(1/2)^{(25/10)} = (1/2)^{2.5} \approx 0.177 \approx \%$$

Answer: 1/5

Q10. Light λ = 600 nm ejects electrons with K_max = 1.5 eV. Find ϕ . (h c = 1240 eV·nm)

Solution

E_photon =
$$1240/600 \approx 2.067 \text{ eV}$$

 $\phi = \text{E} - \text{K}_{\text{max}} = 2.067 - 1.5 \approx 0.567 \approx 0.58 \text{ eV} \rightarrow \textbf{(A)}$

Answer: 0.58 eV

Q11. Electrons accelerated through 20 kV strike target. Find cutoff λ .

Solution

$$\lambda_{min} = 1240/20000 = 0.062 \text{ nm} \rightarrow (A)$$

Answer: 0.062 nm

Q12. In β^- decay, neutron \rightarrow proton. Atomic number:

Solution

The atomic number will automatically increase by 1

Answer: Increases by 1

Q13. A sample's activity decreases from 8000 Bq to 1000 Bq in 3 hours. Find its half-life.

Solution

N=N0e- λ t⇒ λ =t1ln(N0/N)=31ln(8000/1000)≈0.693/1.5≈0.462 hr⁻¹. T1/2=ln2/ λ ≈1.5 h=90 min→(B)T_{1/2} = ln2/ λ ≈ 1.5 h = 90 min → (B)T1/2=ln2/ λ ≈1.5 h=90 min

Answer: 90 min

Q14. An atom (A=238, Z=92) emits an alpha particle. Find the mass number and atomic number of the daughter nucleus.

Solution

Alpha decay: A \rightarrow A-4, Z \rightarrow Z-2 \rightarrow 238-4=234, 92-2=90 \rightarrow (A)

Answer: A=234

Q15. A nucleus has 60 nucleons and binding energy per nucleon 8 MeV. Find total binding energy.

Solution

BE_total = $60 \times 8 = 480 \text{ MeV} \rightarrow \textbf{(A)}$

Answer: 480 MeV

