JEE Main 2026 Thermodynamics & Kinetic Theory Question PDF

Q1. A diatomic gas (γ = 1.4) expands adiabatically from 4 L to 8 L at an initial pressure 2 × 10⁵ Pa. Find the work done.

Solution

W = $(P_1V_1 - P_2V_2)/(\gamma - 1)$ Using $P_1V_1^{\Lambda}\gamma = P_2V_2^{\Lambda}\gamma \Rightarrow P_2 = P_1(V_1/V_2)^{\Lambda}\gamma$ $P_2 = 2\times10^5(0.5)^{\Lambda}1.4 = 2\times10^5\times0.378 = 7.56\times10^4 Pa$ W = $(2\times10^5\times4\times10^{-3} - 7.56\times10^4\times8\times10^{-3})/0.4 = (800 - 604.8)/0.4 = 487 J$

Answer: 487 J

Q2. A gas expands isothermally from 2 L to 8 L at 300 K. The initial pressure is 4 × 10⁵ Pa. Find the work done.

Solution

For an isothermal process, $W = nRT ln(V_2/V_1) = P_1V_1 ln(V_2/V_1)$

 $W = (4 \times 10^{5})(2 \times 10^{-3}) \ln(8/2) = 800 \ln(4) = 800 \times 1.386 = 1109 J$

Answer: 1109 J

Q3. At what temperature will the RMS speed of oxygen molecules be twice its value at 300 K?

Solution

$$v_{rms} \propto \sqrt{T} \Rightarrow v_{2}/v_{1} = \sqrt{(T_{2}/T_{1})}$$

2 = $\sqrt{(T_{2}/300)} \Rightarrow T_{2} = 4 \times 300 = 1200 \text{ K}$

Answer: 1200 K

Q4. If the mean free path at 27°C and 1 atm is 6.6×10⁻⁸ m, find it at 54°C and 0.5 atm.

Solution

 $\lambda \propto T / P$ $\lambda_2/\lambda_1 = (T_2/T_1) \times (P_1/P_2)$ $\lambda_2 = 6.6 \times 10^{-8} \times (327/300) \times (1/0.5) = 6.6 \times 10^{-8} \times 2.18 = 1.44 \times 10^{-7} \text{ m}$ **Answer:** 1.44×10⁻⁷ m

Q5. Find the pressure of 1 mole of nitrogen gas in a 10 L container if RMS speed = 500 m/s.

Solution

P =
$$(1/3) \times (m/V) \times v_rms^2 \times N_A$$

M = 28 g/mol = 28×10^{-3} kg/mol
P = $(1/3)(1 \times 28 \times 10^{-3}/10^{-2})(500^2) = (1/3)(2.8)(2.5 \times 10^5) = 2.33 \times 10^5$ Pa

Answer: 2.33×10⁵ Pa

Q6. Find the average kinetic energy per molecule of a monatomic gas at 300 K.

Solution

$$E = (3/2)kT = (3/2)(1.38 \times 10^{-23})(300) = 6.21 \times 10^{-21} J$$

Answer: 6.21×10⁻²¹ J

Q7. A gas expands from 2 L to 6 L at a constant pressure of 1×10⁵ Pa. Find work done.

Solution

$$W = P\Delta V = 1 \times 10^5 \times (6-2) \times 10^{-3} = 400 \text{ J}$$

Answer: 400 J

Q8. For a monatomic gas, if temperature increases by 40 K for 2 mols, find ΔU .

Solution

$$\Delta U = nC_V\Delta T = n(3/2 R)\Delta T = 2 \times 1.5 \times 8.314 \times 40 = 998 J$$

Answer: 998 J

Q9. If temperature of gas increases by factor 2 during adiabatic compression, find pressure ratio ($\gamma = 1.4$).

Solution

$$T_2/T_1 = (P_2/P_1)^{\wedge}(\gamma-1)/\gamma$$

 $2 = (P_2/P_1)^{\wedge}(0.4/1.4)$
 $(P_2/P_1) = 2^{\wedge}(3.5) = 11.3$

Answer: 11.3

Q10. For O_2 at 300 K, find v mp and v rms.

Solution

M =
$$32 \times 10^{-3}$$
 kg/mol
v_mp = $\sqrt{(2RT/M)} = \sqrt{(2 \times 8.314 \times 300/0.032)} = 395$ m/s
v rms = $\sqrt{(3RT/M)} = \sqrt{(3 \times 8.314 \times 300/0.032)} = 484$ m/s

Answer: v_mp = 395 m/s and v_rms = 484 m/s

Q11. Find v_avg : v_mp : v_rms for a gas.

Solution

v_mp =
$$\sqrt{(2RT/M)}$$
, v_avg = $\sqrt{(8RT/\pi M)}$, v_rms = $\sqrt{(3RT/M)}$
Ratio = 1.128 : 1 : 1.225 ≈ 1.13 : 1 : 1.22

Answer: 1.13 : 1 : 1.22

Q12. If a Carnot engine absorbs 600 J of heat from the source at 500 K and rejects heat to sink at 300 K, find Q₂.

Solution

$$Q_2/Q_1 = T_2/T_1 \Rightarrow Q_2 = 600 \times (300/500) = 360 \text{ J}$$

Answer: 360 J

Q13. A monatomic gas ($\gamma = 5/3$) is compressed adiabatically to half its volume. Find T_2/T_1 .

Solution

$$T_2/T_1 = (V_1/V_2)^{\wedge}(\gamma-1) = (2)^{\wedge}(2/3) = 1.59$$

Answer: 1.59

Q14. Find internal energy of 3 mols of monatomic gas at 300 K.

Solution

 $U = (3/2)nRT = 1.5 \times 3 \times 8.314 \times 300 = 11224 J$

Answer: 11224 J

Q15. For an isochoric process, pressure of a gas doubles. Find the ratio of final to initial temperature.

Solution

 $P \propto T \Rightarrow T_2/T_1 = P_2/P_1 = 2$

Answer: 2

