JEE Main Current Electricity and Magnetism Solved Questions

Q1. Two wires of lengths 1 m and 2 m, same material, have resistances R and 2R. Find ratio of cross-sectional areas.

Solution

$$R=\rho L/A \Rightarrow R1/R2 = (L1/A1) / (L2/A2) = 1 / 2$$

$$1/A1 / 2/A2 = 1 / 2 \Rightarrow A1/A2 = 1 / 2$$

Answer: A1:A2 = 1:2

Q2. A 2 μF capacitor is charged to 100 V. Find energy stored.

Solution

$$U=1/2 \text{ CV}^2 = 0.5 \cdot 2 \text{ X } 10^{-6} \cdot 100^2 = 0.01 \text{ J}$$

Answer: 0.01 J

Q3. A circular coil of radius 0.05 m carries 2 A. Find magnetic field at center.

Solution

B =
$$\mu$$
0I / 2R = $4\pi \cdot 10 - 7 \cdot 2 / 2 \cdot 0.05 = $8\pi \cdot 10 - \frac{6}{6} \approx 2.51 \times 10 - \frac{5}{5} \times 10^{-5} \times 10^{-$$

Answer: 2.51×10⁻⁵ T

Q4. Find the equivalent resistance of three 6Ω resistors in parallel.

Solution

Answer: 2Ω

Q5. A 10 Ω resistor is connected to a 6 V battery. Find power dissipated.

Solution

$$P = V^2 / R = 6^2 / 10 = 3.6 W$$

Answer: 3.6 W

Q6. A current of 4 A flows for 3 minutes. Find the total charge.

Solution

$$T = 3 \cdot 60 = 180 s$$

$$Q = It = 4 \cdot 180 = 720 C$$

Answer: 720 C

Q7. Two resistors 8 Ω and 12 Ω are connected in series across 20 V. Find voltage across each.

Solution

Total resistance R = 20Ω Current I = 20/20 = 1 A Voltage across R₁ = IR₁ = $1 \cdot 8 = 8$ V

Voltage across $R_1 = 1R_1 = 1 = 0 = 0$ Voltage across $R_2 = 1 = 12 = 12 = 1$

Answer: $V_1 = 8 \text{ V}$, $V_2 = 12 \text{ V}$

Q8. A 1 m long wire carries 2 A. Find the force if placed perpendicular to a 0.1 T magnetic field.

Solution

$$F = BIL = 0.1 \cdot 2 \cdot 1 = 0.2 N$$

Answer: 0.2 N

Q9. A 12 V battery is connected to a 4 Ω resistor. How much charge flows in 5 s?

Solution

$$I = V/R = 12/4 = 3 A$$

 $Q = It = 3.5 = 15 C$

Answer: 15 C

Q10. A wire carries a current of 5 A. Find the torque on a rectangular loop (0.1 m

× 0.2 m, 10 turns) in a 0.05 T magnetic field.

Solution

Torque τ = NIAB sin θ , assume θ = 90° A = 0.1 · 0.2 = 0.02 m² τ = 10 · 5 · 0.02 · 0.05 = 0.05 Nm

Answer: 0.05 Nm

Q11. A wire of resistance 2 Ω carries a current of 3 A. Find the potential difference across it.

Solution

 $V = IR = 3 \cdot 2 = 6 V$

Answer: 6 V

Q12. Find the energy stored in a 5 µF capacitor charged to 50 V.

Solution

 $U = 1/2 \text{ CV}^2 = 1/2 \cdot 5 \text{ X } 10^{-6} \cdot 50^2 = 6.25 \times 10^{-3} \text{ J}$

Answer: 6.25 mJ

Q13. A capacitor of 10 μ F is connected to a 100 V battery. Find the charge stored.

Solution

 $Q = C \cdot V = 10 \times 10^{-6} \cdot 100 = 10^{-3} C$

Answer: 1 mC

Q14. A current of 2 A flows through a resistor of 5 Ω . Calculate the heat produced in 10 s.

Solution

 $H = I^2 Rt = 22 \cdot 5 \cdot 10 = 200 J$

Answer: 200 J

Q15. A conductor rod of length 0.5 m moves perpendicular to a uniform magnetic field of 0.3 T with a velocity of 4 m/s. What is the emf induced between the ends of the rod?

Solution

Motional emf: $\varepsilon = B \ell v = 0.3 \times 0.5 \times 4 = 0.6 V$

Answer: 0.60V

