Numerical Problems in Electrochemistry for JEE Main 2026

1. Calculate the standard EMF of the cell:

```
 Zn \mid Zn^{2^{+}} (0.01M) \mid | Cu^{2^{+}} (0.1M) \mid Cu \\ Given: \\ EZn^{2+}/Zn^{\circ} = -0.76 \ VE^{\circ} (1M) \mid Cu^{2^{+}} (1M)
```

2. For the half-cell reaction:

```
Fe<sup>3+</sup> + e<sup>-</sup> \rightarrow Fe<sup>2+</sup>, with E = 0.77 VE^\circ = 0.77\,VE = 0.77V, Calculate the cell potential when: [Fe<sup>3+</sup>] = 0.01 M and [Fe<sup>2+</sup>] = 0.1 M.
```

For the reaction:

```
Cr2O72-+14H++6e-\rightarrow2Cr3++7H2O\text{Cr}_2\text{O}_7^{2-} + 14 H^+ + 6 e^- \rightarrow 2 Cr^{3+} + 7 H_2OCr2O72-+14H++6e-\rightarrow2Cr3++7H2O, find the number of electrons transferred.
```

- 4. Calculate the electrode potential of a hydrogen electrode when the concentration of H+H^+H+ ions is 0.001 M at 25°C.
- 5. In an electrolytic cell, calculate the volume of oxygen gas liberated at STP when 5 Faradays of electricity are passed.
- 6. Calculate the pH of a solution if the cell potential for the H₂/H⁺ half-cell is 0.059 V at 25°C.
- 7. Using the Nernst equation, find the EMF of the cell:

```
Ag | Ag^+ (0.01M) || Cu | Cu^{2+} (0.1M)
Given:
EAg^+Ag^-=+0.80 VE^-Circ_{\text{Ag}}^++\text{Ag}} = +0.80\,VEAg^+Ag^-=+0.80V,
ECu^2+\Cu^-=+0.34 VE^-Circ_{\text{Cu}}^2+\text{Cu}} = +0.34\,VECu^+Cu^-=+0.34V.
```

 Calculate the time required to deposit 1 g of copper from a copper sulfate solution using a current of 5 A.

```
(Atomic mass Cu = 63.5 \text{ g/mol}, z = 2).
```

9. For a redox cell reaction at 25°C with a standard cell potential of 1.36 V, calculate the Gibbs free energy change ΔG°\Delta G^\circΔG°.

- 10. Determine the cell potential when the metal ion concentrations on the two electrodes of a concentration cell are 0.1 M and 0.001 M respectively at 25°C.
- 11. Calculate the mass of aluminum deposited when a current of 3 A is passed for 1 hour. (Atomic mass AI = 27 g/mol, z = 3).
- 12. Calculate the EMF of a concentration cell where the concentration of Zn²⁺ ions is 0.1 M on one side and 0.001 M on the other side at 25°C.