JEE Main 2026 Sequence, Series and Binomial Theorem Questions & Solutions PDF

Q1. In the expansion of $(x + 1/x)^{10}$, find the term independent of x.

Solution

General term: $T_{r+1} = (10 \text{ r})x^{10-r} \cdot (1/x)^r = (10 \text{ r})x^{10-2r}$. The exponent of x is zero \Rightarrow 10 - 2r = 0 \Rightarrow r = 5. So the term independent of x is (10 5) = 252.

Answer: (10 5) = 252

Q2. Find the sum of the coefficients of the even-power terms in the expansion of $(1 + x)^{12}$.

Solution

Sum of all coefficients = 2^{12} = 4096. Also from known result: sum of coefficients of even-power terms = sum of coefficients of odd-power terms = 2^{11} = 20482. (This is because set x = 1 gives the total sum and x = -1 gives the difference between even and odd sums.)

Answer: 20482

Q3. In a GP the 5th term is 48 and the 8th term is 384. Find the first term and the common ratio.

Solution

Let the first term = a, ratio = r. Then $ar^4 = 48$; $ar^7 = 384$. Divide: $ar^7/ar^4 = r^3 = 384/48 = 8 \Rightarrow r^3 = 8 \Rightarrow r = 2$. Then $a2^4 = 48 \Rightarrow a = 48/16 = 3$. So, first term = 3, ratio = 2.

Answer: first term = 3, ratio = 2.

Q4. If a GP has first term 8 and common ratio r = 1/2, find its sum to infinity. Then find its 7th term.

Solution

Sum to infinity: since |r| < 1, $S^{\infty} = 8/1 - \frac{1}{2} = 8/(1/2) = 16$. The 7th term = $ar^6 = 8$ X $(1/2)^6 = 8$ X 1/64 = 8/64 = 1/8.

Answer: 7th term = 1/8

Q5. In an AP, the 12th term is 50 and the 20th term is 82. Find the first term and common difference.

Solution

Let first term = a, difference = d.

12th term: a + 11d = 5020th term: a + 19d = 82

Subtract: 8d = 32 \Rightarrow d = 4. Then a + 11 \times 4 = 50 \Rightarrow a = 50 - 44 = 6

Answer: a = 6

Q6. Evaluate $\sum_{k=0}^{n} (n k) 2^{k}$

Solution

Use binomial theorem: $(1 + 2)^n = 3^n = \sum_{k=0}^n (n \ k) 1^{n-k} 2^k$ Thus the sum = 3^n

Answer: 3ⁿ

Q7. In the expansion of $(x - y)^{10}$, find the coefficient of the term containing x^7y^3 .

Solution

General term: $(10 \ 7)x^{10-r} \ (-y)^r$

We want exponent of $x = 7 \Rightarrow 10 - r \Rightarrow r = 3$

Coefficient = $(10 \ 3) \ (-1)^3 = 120 \ X \ (-1) = -120$

Answer: -120

Q8. In the expansion of $(3 + x)^8$, the sum of the coefficients of all terms is _?

Solution

Set $x = 1 \Rightarrow (3 + 1)^8 = 4^8 = 65536$. That equals the sum of the coefficients of all terms.

Answer: 65536

Q9. Find the sum of the infinite GP: 81, 27, 9, ...

Solution

First term a = 81, ratio r=27/81=1/3. |r| < 1 so sum to infinity = 81 / 1 - 1 / 3 = 81 / 2 / 3 = 81 X (3 / 2) = 121.5. Or as a fraction = 243/2.

Answer: 121.5

Q10. Expand $(1 + x)^5$ and find the coefficient of x^3 .

Solution

By binomial theorem: coefficient = (5 3) = 10

Answer: 10

Q11. Evaluate the sum 1 + 1 / 2! + 1 / 3! + ... + 1 / n!. (No closed simple form, but approximate as e).

Solution

Recognise the series approaches e - 1 as $n \rightarrow \infty$. For finite n, just state approximately.

Answer: n→∞

Q12. If the sum of an infinite GP is 16 and its first term is 12, find the common ratio.

Solution

$$S = a/1 - r = 16 \Rightarrow 12/1 - r = 16 \Rightarrow 1 - r = 12/16 = 3/4 \Rightarrow r = 1/4$$

Answer: r = 1/4

Q13. In the expansion of $(x + 2)^6$, what is the term independent of x?

Solution

General term: $(6 \text{ r})x^{6-r}2^r$. Independent of $x \Rightarrow$ exponent of $x = 0 \text{ 6-r} = 0 \Rightarrow r = 6$. Term = $(6 \text{ 6})x^02^6 = 1 \text{ X } 64 = 64$

Answer: 64

Q14. A series: $S = 1 + 4 + 9 + 16 + \cdots + n^2$. Find the sum in closed form.

Solution

Famous formula: $\sum_{k=1}^{n} k^2 = n(n+1) (2n+1) / 6$

Answer: n(n+1) (2n+1) / 6

Q15. Expand $(1 - x)^7$ and find the coefficient of x^5 .

Solution

Coefficient = $(7 \ 5) \ (-1)^5 = 21 \ X \ (-1) = -21$

Answer: -21