JEE Main 2026 Mole Concept and Stoichiometry Practice Set with Solutions PDF

Q1. Empirical formula CH₂O; molar mass ≈ 180 g·mol⁻¹. Find molecular formula.

Solution

Empirical mass = $12.011 + 2 \times 1.008 + 15.999 = 30.026 \text{ g} \cdot \text{mol}^{-1}$. n = $180 \div 30.026 \approx 5.993 \approx 6$.

Molecular formula = $(CH_2O)_6 = C_6H_{12}O_6$.

Answer: C₆H₁₂O₆

Q2. 10.0 g of A reacts theoretically to give 14.0 g product B. If the actual yield is 12.6 g, what is the % yield?

Solution

% yield = (actual \div theoretical)×100 = (12.6 \div 14.0)×100 = 0.9×100 = 90.0%.

Answer: 90.0%

Q3. What is % potassium (K) in K_2SO_4 ? (K = 39.098, S = 32.06, O = 15.999)

Solution

Molar mass = $2 \times 39.098 + 32.06 + 4 \times 15.999 = 78.196 + 32.06 + 63.996 = 174.252 \text{ g} \cdot \text{mol}^{-1}$. Mass K = 78.196. %K = $(78.196 \div 174.252) \times 100 = \text{compute}$ quotient: $78.196 \div 174.252 \approx 0.4489$. $\times 100 = 44.89\%$.

Answer: 44.89% K (≈44.9%)

Q4. A mixture of 2.0 mol He and 3.0 mol N_2 at a total pressure 1.0 atm. What is the partial pressure of N_2 ?

Solution

Mole fraction of $N_2 = 3.0 \div (2.0+3.0) = 3.0 \div 5.0 = 0.6$. Partial pressure = 0.6×1.0 atm = 0.6 atm.

Answer: 0.6 atm

Q5. 0.25 mol of an ideal gas at STP (22.414 L·mol⁻¹) occupies what volume?

Solution

 $V = n \times 22.414 = 0.25 \times 22.414 = 5.6035 L$

Answer: 5.6035 L (≈5.60 L)

Q6. 4.0 g NaOH reacts with 6.5 g HCl. Reaction: NaOH + HCl \rightarrow NaCl + H₂O. Which is limiting and mass of NaCl produced? (Na=22.990, O=15.999, H=1.008, Cl=35.45)

Solution

Molar masses: NaOH = 22.990 + 15.999 + 1.008 = 39.997 g·mol⁻¹. Moles NaOH = $4.0 \div 39.997 = 0.1000$ (approx). HCl = 1.008 + 35.45 = 36.458 g·mol⁻¹. Moles HCl = $6.5 \div 36.458$ = compute: 36.458 into $6.5 \approx 0.1782$. Reaction 1:1; NaOH moles 0.1000 < HCl $0.1782 \rightarrow$ NaOH limiting. Moles NaCl produced = 0.1000. Molar mass NaCl = 22.990 + 35.45 = 58.440 g·mol⁻¹. Mass = $0.1000 \times 58.440 = 5.844$ g.

Answer: NaOH limiting; 5.844 g NaCl

Q7. 49 g H₂SO₄ (98.079 g·mol⁻¹) dissolved to make 1 L solution. What is normality for acid–base reactions (H₂SO₄ provides 2 H⁺)?

Solution

Moles = $49 \div 98.079 = 0.4995 \approx 0.500$ mol. Normality = molarity × equivalents per mole = 0.500 mol·L⁻¹ × 2 = 1.000 N.

Answer: 1.00 N

Q8. A solution contains 20 mg of solute in 2 L of water. Express concentration in ppm (assume density $\approx 1 \text{ g} \cdot \text{mL}^{-1}$).

Solution

2 L = 2000 g (approx). ppm = (mass solute (mg) ÷ mass solution (kg)×10⁶?) Simpler: ppm ≈ mg solute per kg solution. Mass solution ≈ 2000 g = 2.000 kg. ppm = 20 mg ÷ 2.000 kg = 10 mg·kg⁻¹ = 10 ppm.

Answer: 10 ppm

Q9. A sample of $CuSO_4 \cdot xH_2O$: mass 2.518 g. After heating anhydrous mass = 1.600 g. Find x. (Cu=63.546, S=32.06, O=15.999, H=1.008)

Solution

Mass water lost = 2.518 - 1.600 = 0.918 g. Moles water = $0.918 \div 18.015 = 0.05096$. Moles anhydrous CuSO₄ = mass ÷ M(CuSO₄). M(CuSO₄)= $63.546 + 32.06 + 4 \times 15.999 = 63.546 + 32.06 + 63.996 = 159.602$ g·mol⁻¹. Moles = $1.600 \div 159.602 = 0.01002$. Ratio x = moles H₂O ÷ moles CuSO₄ = $0.05096 \div 0.01002 = 5.086 \approx 5$. So x = 5 (but common hydrate is 5 for CuSO₄? actually usual is 5).

Answer: $x = 5 \rightarrow CuSO_4 \cdot 5H_2O$

Q10. 10 L of CO (g) reacts with excess O₂ at same T & P to give CO₂. Volume of CO₂ produced?

Solution

1 mol CO \rightarrow 1 mol CO₂, volumes equal at same T & P. So 10 L CO \rightarrow 10 L CO₂.

Answer: 10 L

Q11. What is the molarity of 25.0 g NH₄Cl (M = 53.491 g·mol⁻¹) dissolved to make a 500 mL solution?

Solution

Moles = $25.0 \div 53.491 = 0.4674$. Volume = 0.500 L. M = $0.4674 \div 0.500 = 0.9348$ M.

Answer: 0.9348 M (≈0.935 M)

Q12. In reaction $2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$, how many moles of Fe^{3+} are reduced by 0.10 mol Sn^{2+} ?

Solution

Stoichiometry: 2 mol Fe³⁺ per 1 mol Sn²⁺. So for 0.10 mol Sn²⁺, Fe³⁺ required = $2\times0.10 = 0.20$ mol.

Answer: 0.20 mol Fe³⁺

Q13. A sample labelled Na₂CO₃ (pure) weighing 5.00 g actually contains 10% impurity by mass (inert). How many moles of CO₃²⁻ are present? (Na₂CO₃ molar mass = 105.988 g·mol⁻¹ approximate)

Solution

Pure Na₂CO₃ mass = 90% of 5.00 = 4.50 g. Moles = 4.50 ÷ 105.988 = compute: 105.988 into $4.50 \approx 0.04245$. (4.50 ÷ 105.988 = 0.04245). Each formula unit has one CO₃²⁻ \rightarrow moles CO₃²⁻ = 0.04245 mol.

Answer: 0.04245 mol

Q14. Ammonium nitrate decomposes: $NH_4NO_3 \rightarrow N_2O + 2H_2O$. If 17.0 g NH_4NO_3 decomposes, what volume of N_2O at STP (22.414 L·mol⁻¹) is produced? (N=14.007, H=1.008, O=15.999)

Solution

Molar mass NH₄NO₃ = $2 \times 14.007 + 4 \times 1.008 + 3 \times 15.999 = 28.014 + 4.032 + 47.997 = <math>80.043 \text{ g} \cdot \text{mol}^{-1}$. Moles = $17.0 \div 80.043 = 0.2123$. Reaction gives 1 mol N₂O per 1 mol NH₄NO₃. Volume = $0.2123 \times 22.414 = 4.757 \text{ L}$

Answer: 4.76 L (approx)

Q15. 25.0 mL of 0.100 M H₂SO₄ is neutralized by NaOH. Volume of 0.150 M NaOH required? Reaction: $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$.

Solution

Moles $H_2SO_4 = 0.0250 \times 0.100 = 0.00250$ mol. Needs 2 mol NaOH per mol acid \rightarrow moles NaOH = 0.00500 mol. Volume = moles \div M = 0.00500 \div 0.150 = 0.03333 L = 33.33 mL.

Answer: 33.33 mL NaOH

Q16. A container has 1.00 mol A and 2.00 mol B at 300 K and total pressure 3.00 atm. If A reacts completely with B consuming 0.50 mol B to produce C (1:1 stoichiometry A + B \rightarrow C), what is final total pressure (assume T constant and ideal gas)?

Solution

Initial total moles = 1.00 + 2.00 = 3.00 mol. Reaction consumes A: amount reacted = 0.50 mol (since B consumed 0.50). A left = 1.00 - 0.50 = 0.50 mol. B left = 2.00 - 0.50 = 1.50 mol. C formed = 0.50 mol. Final total moles = 0.50 + 1.50 + 0.50 = 2.50 mol. Pressure \propto moles (at constant V and T) so P_final = P_initial \times (n_final \div n_initial) = 3.00 atm \times ($2.50 \div 3.00$) = $3.00 \times 0.833333...$ = 2.50 atm

Answer: 2.50 atm