BITSAT 2025 May 26 Question Paper

Time Allowed :3 Hours | **Maximum Marks :**390 | **Total questions :**130

General Instructions

Read the following instructions very carefully and strictly follow them:

- 1. Duration of Exam: 3 Hours
- 2. Total Number of Questions: 130 Questions
- 3. Section-wise Distribution of Questions:
 - Physics 40 Questions
 - Chemistry 40 Questions
 - Mathematics 50 Questions
- 4. Type of Questions: Multiple Choice Questions (Objective)
- 5. Marking Scheme: Three marks are awarded for each correct response
- 6. Negative Marking: One mark is deducted for every incorrect answer.
- 7. Each question has four options; only one is correct.
- 8. Questions are designed to test analytical thinking and problem-solving skills.

1. If $\vec{a} = \hat{i} + 2\hat{j} - \hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$, and $\vec{c} = -\hat{i} + 3\hat{j} + 2\hat{k}$, find $\vec{a} \cdot (\vec{b} \times \vec{c})$.	
(1) 15	
(2) -30	

(4) -20

(3) 20

2. If the word "GIFT" is coded using A=1, B=2, ..., Z=26, and each letter's value is squared, what is the sum of the coded values?

- (1) 166
- **(2)** 216
- (3) 234
- (4) 252

3. From the top of a 60 m high building, the angles of depression to two points on the ground on the same side of the building are 30° and 60° . What is the distance between the two points?

- (1) $40\sqrt{3}$ m
- (2) $20\sqrt{3}$ m
- (3) 60 m
- (4) 80 m

4. Maximize z = 3x + 4y subject to $x + y \le 4$, $x \ge 0$, $y \ge 0$. What is the maximum value of z?

- (1) 12
- **(2)** 16
- (3) 14
- **(4)** 10

5. Find the sum of the series 1 + 3 + 5 + ... + 99**.**

- (1) 2500
- (2) 2400

- (3) 2600
- (4) 2300

6. If
$$\vec{p} = 3\hat{i} - \hat{j} + 2\hat{k}$$
, $\vec{q} = \hat{i} + 4\hat{j} - \hat{k}$, and $\vec{r} = 2\hat{i} - 3\hat{j} + 5\hat{k}$, find $\vec{p} \cdot (\vec{q} \times \vec{r})$.

- (1)36
- (2) 36
- (3)65
- (4) -65

7. If the word "BITS" is coded using $A=1, B=2, \ldots, Z=26$, and the code is the sum of the squares of each letter's value, what is the code for the word?

- (1) 846
- (2)854
- (3) 864
- (4) 874

8. Maximize z = 5x + 2y subject to $2x + y \le 8$, $x \ge 0$, $y \ge 0$. What is the maximum value of z?

- (1) 40
- (2) 30
- (3)25
- **(4)** 20

9. From the top of a 50 m tall building, the angles of depression to two points on the ground are 45° and 30° . Find the distance between the two points.

- (1) $20(\sqrt{3}-1)$ m
- (2) $25(\sqrt{3}-1)$ m
- (3) $30(\sqrt{3}-1)$ m
- (4) $50(\sqrt{3}-1)$ m

10. A projectile is launched with an initial velocity of 20 m/s at an angle of 30° with the horizontal. What is the maximum height reached by the projectile? (Take $g = 10 \text{ m/s}^2$)

- $(1) 5 \,\mathrm{m}$
- (2) 10 m
- (3) 15 m
- $(4) 20 \,\mathrm{m}$

11. How much heat is required to raise the temperature of 2 kg of water from $25^{\circ}C$ to $75^{\circ}C$? (Specific heat capacity of water $c = 4200 \text{ J/kg}^{\circ}C$)

- (1) $4.2 \times 10^5 \,\mathrm{J}$
- (2) $5.0 \times 10^5 \,\mathrm{J}$
- (3) $3.5 \times 10^5 \,\mathrm{J}$
- (4) $4.8 \times 10^5 \,\mathrm{J}$

12. Which of the following is the correct electronic configuration of ${\rm Cr}$ (Chromium, atomic number 24)?

- (1) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^4 4s^2$
- (2) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^1$
- (3) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^0$
- (4) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^3$

13. For the reaction $A + B \to C$, the rate law is found to be rate $= k[A]^2[B]$. If the concentration of A is doubled and B is halved, by what factor does the rate change?

- (1) 2
- $(2)\frac{1}{2}$
- (3) 4
- (4) 1

14. In the reaction $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g)$, if the equilibrium constant $K_c = 4 \times 10^{-3}$ at a certain temperature, which of the following is true about the reaction at equilibrium?

- (1) Reactants are favored over products
- (2) Products are favored over reactants

- (3) Reactants and products are equally favored
- (4) Reaction does not reach equilibrium

15. In the electrolysis of molten NaCl , what is produced at the cathode?

- (1) Chlorine gas
- (2) Sodium metal
- (3) Hydrogen gas
- (4) Oxygen gas