BITSAT 2025 May 29 Shift 2 Question Paper

Time Allowed :3 Hours | **Maximum Marks :**390 | **Total questions :**130

General Instructions

Read the following instructions very carefully and strictly follow them:

- 1. Duration of Exam: 3 Hours
- 2. Total Number of Questions: 130 Questions
- 3. Section-wise Distribution of Questions:
 - Physics 40 Questions
 - Chemistry 40 Questions
 - Mathematics 50 Questions
- 4. Type of Questions: Multiple Choice Questions (Objective)
- 5. Marking Scheme: Three marks are awarded for each correct response
- 6. Negative Marking: One mark is deducted for every incorrect answer.
- 7. Each question has four options; only one is correct.
- 8. Questions are designed to test analytical thinking and problem-solving skills.

1. Evaluate the integral:

$$\int_0^{\pi/4} \frac{\ln(1+\tan x)}{\cos x \sin x} \, dx$$

- (A) $\frac{\pi}{4} \ln 2$
- (B) $\frac{\pi}{8} \ln 2$
- (C) ln 2
- (D) $\frac{1}{2} \ln 2$
- 2. If a point P(x,y) satisfies the condition that its distance from the point (3,-2) is equal to its distance from the line y=2x+1, then the locus of point P is:
- (A) A parabola
- (B) A circle
- (C) A straight line
- (D) A pair of straight lines
- 3. Let the function $f(x) = \sqrt{\log_e(1-x^2)}$. Then the domain of f(x) is:
- (A) $(-1,0) \cup (0,1)$
- (B) (-1,1)
- (C) $(-1,1) \setminus \{0\}$
- (D) $\left(-1, -\frac{1}{\sqrt{e}}\right) \cup \left(\frac{1}{\sqrt{e}}, 1\right)$
- 4. Evaluate the sum:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$$

- (A) $\frac{1}{4}$
- (B) $\frac{1}{2}$
- (C) $\frac{1}{6}$
- (D) $\frac{1}{3}$
- **5.** Let $f(x) = |x^2 4x + 3| + |x^2 5x + 6|$. The **minimum value** of f(x) is:

- (A) 2
- (B) 3
- (C) 1
- (D) 0
- 6. Let vectors a, b, c be such that

$$\mathbf{a} = \hat{i} + 2\hat{j} - \hat{k}, \quad \mathbf{b} = 2\hat{i} - \hat{j} + \hat{k}, \quad \mathbf{c} = \hat{i} + \hat{j} + \hat{k}$$

Then the volume of the parallelepiped formed by these vectors is:

- 7. A box contains 5 red balls and 4 green balls. Two balls are drawn one after another without replacement. What is the probability that the second ball is green, given that the first ball drawn was red?
- (A) $\frac{1}{2}$ (B) $\frac{5}{18}$ (C) $\frac{2}{5}$ (D) $\frac{4}{8}$

- 8. Evaluate:

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

- (A) 1
- (B) 0
- (C) ∞
- (D) 0.5
- 9. A particle moves along the x-axis under a force $F(x) = 6x^2$ N. The work done by this force in moving the particle from x = 1 m to x = 2 m is:
- (A) 14 J
- (B) 18 J
- (C) 24 J

- 10. A Carnot engine operates between temperatures of $600\,\mathrm{K}$ and $300\,\mathrm{K}$. If it absorbs
- 900 J of heat from the source, how much work does it perform? (A) 300 J
- (B) 450 J
- (C) 600 J
- (D) 150 J
- 11. Light of wavelength $400\,\mathrm{nm}$ falls on a metal surface with a work function of $2.0\,\mathrm{eV}$.

(Planck's constant $h=6.63\times 10^{-34}$ Js, $c=3\times 10^8$ m/s, $1\,\mathrm{eV}=1.6\times 10^{-19}$ J) Find the maximum kinetic energy of emitted photoelectrons.

- (A) 1.1 eV
- (B) 2.1 eV
- (C) 0.1 eV
- (D) 0.8 eV
- 12. Two capacitors $C_1=4\mu F$ and $C_2=6\mu F$ are connected in series across a 60 V battery. The potential difference across C_2 is:
- (A) 24 V
- (B) 36 V
- (C) 40 V
- (D) 20 V
- 13. A proton enters a uniform magnetic field $\vec{B} = 0.5\hat{k} \text{ T}$ with velocity $\vec{v} = 10^6\hat{i} \text{ m/s}$. The magnitude of the magnetic force on the proton is:
- (A) $8.0 \times 10^{-14} \text{ N}$
- (B) $1.6 \times 10^{-13} \text{ N}$
- (C) $8.0 \times 10^{-13} \text{ N}$
- (D) 0

14. The pH of a 0.01 M solution of a weak acid HA is 4. Calculate its dissociation constant (Ka).

- (A) 1.0×10^{-6}
- **(B)** 1.0×10^{-8}
- (C) 1.0×10^{-4}
- (D) 1.0×10^{-5}

15. The complex $[Cr(NH_3)_4Cl_2]^+$ shows how many geometrical isomers?

- (A) 1
- (B) 2
- (C) 3
- (D) 4

16. The standard electrode potential for $\,{\rm Zn^{2+}/Zn}\,$ is $\,-0.76$ V and for $\,{\rm Cu^{2+}/Cu}\,$ is $\,+0.34$ V. The EMF of the cell

$$Zn|Zn^{2+}||Cu^{2+}|Cu$$

is:

- (A) 1.10 V
- (B) 0.76 V
- (C) -0.42 V
- (D) 0.34 V

17. The acidic character of the oxides increases in the order:

- $(A) \ Na_2O < MgO < Al_2O_3 < SiO_2 < P_2O_5$
- (B) $Na_2O < Al_2O_3 < MgO < SiO_2 < P_2O_5$
- (C) $P_2O_5 < SiO_2 < Al_2O_3 < MgO < Na_2O$
- $\label{eq:continuity} \text{(D) } Al_2O_3 < SiO_2 < MgO < P_2O_5 < Na_2O$

18. A first-order reaction is 25% complete in 30 minutes. What is its half-life?