

DAY — **09**

SEAT NUMBER

--	--	--	--	--	--

2025 | II | 22

1100

J-316

(E)

MATHEMATICS & STATISTICS (88) (COMMERCE)

Time : 3 Hrs.

(15 Pages)

Max. Marks : 80

General Instructions :

- (i) All questions are compulsory.
- (ii) There are six questions divided into two sections.
- (iii) Write answers of Section-I and Section-II in the same answer book.
- (iv) Use of logarithmic tables is allowed. Use of calculator is not allowed.
- (v) For L.P.P. and Time Series graph paper is not necessary. Only rough sketch of graph is expected.
- (vi) Start answer to each question on a new page.
- (vii) For each objective type of question (i.e. Q.1 and Q.4) only the first attempt will be considered for evaluation.

SECTION - I

Q. 1. (A) Select and write the correct answer of the following multiple choice type of questions (1 mark each) : (6) [12]

(i) If p : He is intelligent

q : He is strong

Then, symbolic form of statement "It is wrong that, he is intelligent or strong" is :

(a) $\sim p \vee \sim q$

(b) $\sim(p \wedge q)$

(c) $\sim(p \vee q)$

(d) $p \vee \sim q$

(ii) $\int \left(x + \frac{1}{x} \right)^3 dx =$

(a) $\frac{1}{4} \left(x + \frac{1}{x} \right)^4 + c$

(b) $\frac{x^4}{4} + \frac{3x^2}{2} + 3 \log x - \frac{1}{2x^2} + c$

(c) $\frac{x^4}{4} + \frac{3x^2}{2} + 3 \log x + \frac{1}{x^2} + c$

(d) $(x - x^{-1})^3 + c$

(iii) $\int_2^7 \frac{\sqrt{x}}{\sqrt{x} + \sqrt{9-x}} dx =$

(a) $\frac{7}{2}$

(b) $\frac{5}{2}$

(c) 7

(d) 2

(iv) The area of the region bounded by the curve $y=x^2$ and the line $y=4$ is

(a) $\frac{32}{3}$ sq. units (b) $\frac{64}{3}$ sq. units
(c) $\frac{16}{3}$ sq. units (d) 64 sq. units

(v) The order and degree of the differential equation

$$\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 = a^x \text{ are } \underline{\quad} \text{ respectively.}$$

(a) 1, 1 (b) 1, 2
(c) 2, 2 (d) 2, 1

(vi) The integrating factor of the differential equation

$$\frac{dy}{dx} + \frac{y}{x} = x^3 - 3 \text{ is}$$

(a) $\log x$ (b) e^x
(c) $\frac{1}{x}$ (d) x

(B) State whether the following statements are true or false

(1 mark each) : (3)

(i) If A is a matrix and K is a constant, then

$$(KA)^T = KA^T$$

(ii) $\int \log x \, dx = x \log x + x + c$

(iii) The differential equation obtained by eliminating

arbitrary constants from $bx + ay = ab$ is $\frac{d^2y}{dx^2} = 0$.

(C) Fill in the following blanks (1 mark each) : (3)

(i) The average revenue R_A is 50 and elasticity of demand η is 5, the marginal revenue R_M is ____.

(ii) $\int e^x \left(\frac{1}{x} - \frac{1}{x^2} \right) dx = \text{_____} + c$

(iii) If $f'(x) = x^2 + 5$ and $f(0) = -1$ then $f(x) = \text{_____}$.

Q. 2. **(A)** Attempt any TWO of the following questions (3 marks each) : (6) [14]

(i) Write the converse, inverse and contrapositive of the statement "If a triangle is equilateral then it is equiangular".

(ii) Find x, y, z if $\left\{ 5 \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 3 & -2 \\ 1 & 3 \end{bmatrix} \right\} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} x-1 \\ y+1 \\ 2z \end{bmatrix}$

(iii) Evaluate : $\int \frac{1}{x(x^6 + 1)} dx$

(B) Attempt any TWO of the following questions (4 marks each) : (8)

(i) Solve the following equations by the method of inversion :

$$2x - y + z = 1$$

$$x + 2y + 3z = 8$$

$$3x + y - 4z = 1$$

(ii) Find MPC, MPS, APC and APS, if the expenditure E_c of a person with income I is given as :

$$E_c = (0.0003)I^2 + (0.075)I; \text{ when } I = 1000$$

(iii) Evaluate : $\int_1^2 \frac{dx}{x^2 + 6x + 5}$

Q. 3. (A) Attempt any TWO of the following questions (3 marks each): (6) [14]

(i) Find $\frac{dy}{dx}$ if $y = (x)^x + (a)^x$

(ii) Find the area of the region bounded by the parabola $y^2 = 25x$ and the line $x = 5$.

(iii) Find the differential equation by eliminating arbitrary constants from the relation $y = Ae^{3x} + Be^{-3x}$.

(B) Attempt any ONE of the following questions (4 marks each): (4)

(i) Using the truth table, verify

$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

(ii) If $x = \frac{4t}{1+t^2}$, $y = 3 \left(\frac{1-t^2}{1+t^2} \right)$, then show that

$$\frac{dy}{dx} = \frac{-9x}{4y}.$$

(C) Attempt any ONE of the following questions (Activity) (4 marks each): (4)

(i) Divide the number 84 into two parts such that the product of one part and square of the other is maximum.

Solution :

Let one part be x then the other part will be $84 - x$.

$$\therefore f(x) = \boxed{\quad}$$

$$\therefore f'(x) = 168x - 3x^2$$

For extreme values $f'(x) = 0$

$$168x - 3x^2 = 0$$

$$\therefore 3x(56 - x) = 0$$

$$\therefore x = \boxed{\quad} \text{ OR } \boxed{\quad}$$

$$f''(x) = 168 - 6x$$

$$\text{If } x = 0, f''(0) = 168 - 6(0) = 168 > 0$$

\therefore function attains minimum at $x = 0$

$$\text{If } x = 56, f''(56) = \boxed{\quad} < 0$$

\therefore function attains maximum at $x = 56$

\therefore Two parts of 84 are $\boxed{\quad}$ and $\boxed{\quad}$

(ii) Solve the following differential equation

$$(x^2 - yx^2)dy + (y^2 + xy^2)dx = 0$$

Solution :

Separating the variables, the given equation can be written as :

$$\boxed{\quad} dy + \boxed{\quad} dx = 0$$

$$\therefore \left(y^{-2} - \frac{1}{y} \right) dy + \left(x^{-2} + \frac{1}{x} \right) dx = 0$$

$$\boxed{\quad} dy - \frac{1}{y} dy + x^{-2} dx + \boxed{\quad} dx = 0$$

Integrating we get,

$$\int y^{-2} dy - \int \frac{1}{y} dy + \int x^{-2} dx + \int \frac{1}{x} dx = 0$$

$$\therefore \frac{y^{-1}}{-1} - \boxed{} + \frac{x^{-1}}{-1} + \boxed{} = c$$

$$-\frac{1}{y} - \frac{1}{x} + \log x - \log y = c$$

$$\log x - \log y = \boxed{} + c$$

is the required solution.

SECTION - II

Q. 4. (A) Select and write the correct answer of the following multiple choice type of questions (1 mark each) : (6) [12]

- (i) An agent who gives guarantee to his principal that the party will pay the sale price of goods is called –
 - (a) Auctioneer
 - (b) Del credere agent
 - (c) Factor
 - (d) Broker
- (ii) In an ordinary annuity, payments or receipts occur at
 - (a) Beginning of each period
 - (b) End of each period
 - (c) Mid of each period
 - (d) Quarterly basis
- (iii) Moving averages are useful in identifying
 - (a) Seasonal component
 - (b) Irregular component
 - (c) Trend component
 - (d) Cyclical component

(iv) If $P_{01}(L)=90$ and $P_{01}(P)=40$, then $P_{01}(D-B)$ is _____.

- (a) 65
- (b) 50
- (c) 25
- (d) 130

(v) The objective of an assignment problem is to assign

- (a) Number of jobs to equal number of persons at maximum cost
- (b) Number of jobs to equal number of persons at minimum cost
- (c) Only to maximize the cost
- (d) Only to minimize the cost

(vi) The expected value of the sum of two numbers obtained when two fair dice are rolled is _____.

- (a) 5
- (b) 6
- (c) 7
- (d) 8

(B) State whether the following statements are true or false

(1 mark each) : (3)

- (i) If $b_{yx} + b_{xy} = 1.30$ and $r = 0.75$ then the given data is inconsistent.
- (ii) Cyclic variation can occur several times in a year.
- (iii) Cost of living index number is used in calculating purchasing power of money.

(C) Fill in the following blanks (1 mark each) : (3)

- (i) The amount paid to the holder of the bill after deducting banker's discount is known as _____.
- (ii) The simplest method of measuring trend of time series is _____.
- (iii) Quantity index number by weighted aggregate method is given by _____.

Q. 5. **(A)** Attempt any TWO of the following questions [14]

(3 marks each) : (6)

- (i) Compute the appropriate regression equation for the following data :

X	1	2	3	4	5
Y	5	7	9	11	13

X is the independent variable and Y is the dependent variable.

- (ii) A company makes concrete bricks made up of cement and sand. The weight of a concrete brick has to be at least 5 kg. Cement costs ₹ 20 per kg and sand costs ₹ 6 per kg. Strength consideration dictate that a concrete brick should contain minimum 4 kg of cement and not more than 2 kg of sand. Formulate the L.P.P. for the cost to be minimum.
- (iii) Find the mean of number of heads in three tosses of a fair coin.

(B) Attempt any TWO of the following questions (4 marks each) : (8)

(i) Obtain the trend value for the following data using 4-yearly centered moving averages :

Years	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985
Index	0	2	3	3	2	4	5	6	7	10

(ii) Find the sequence that minimizes the total elapsed time to complete the following jobs in the order AB. Find the total elapsed time and idle time for machine B :

Jobs	I	II	III	IV	V	VI	VII
Machine A	7	16	19	10	14	15	5
Machine B	12	14	14	10	16	5	7

(iii) Five cards are drawn successively with replacement from a well shuffled deck of 52 cards. Find the probability that :

(a) all the five cards are spades
(b) only 3 cards are spades.

Q. 6. **(A)** Attempt any TWO of the following questions (3 marks each) : (6) [14]

(i) A house valued at ₹ 8,00,000 is insured at 75% of its value. If the rate of premium is 0.80%, find the premium paid by the owner of the house. If agent's

commission is 9% of the premium, find agent's commission.

(ii) Solve the following L.P.P. by graphical method.

$$\text{Maximize : } z = 4x + 6y$$

$$\text{Subject to : } 3x + 2y \leq 12$$

$$x + y \geq 4$$

$$x, y \geq 0$$

(iii) Defects on plywood sheet occur at random with the average of one defect per 50 sq.ft. Find the probability that such a sheet has :

(a) no defect

(b) at least one defect

$$(\text{use } e^{-1} = 0.3678)$$

(B) Attempt any ONE of the following questions (4 marks each) : (4)

(i) The equations of two regression lines are $10x - 4y = 80$ and $10y - 9x = -40$. Find

(a) \bar{x} and \bar{y}

(b) b_{YX} and b_{XY}

(c) r

(d) If $\text{var}(Y) = 36$, obtain $\text{var}(X)$.

(ii) Find x if the cost of living index is 150 :

Group	Food	Clothing	Fuel and electricity	House Rent	Miscellaneous
I	180	120	300	100	160
W	4	5	6	x	3

(C) Attempt any ONE of the following questions (Activity)
(4 marks each) : (4)

(i) A bill of ₹ 18,000 was discounted for ₹ 17,568 at a bank on 25th October 2017. If the rate of interest was 12% p.a. what is the legal due date?

Solution :

Given $SD = 18,000$; $CV = 17,568$

$$r = 12\% \text{ p.a.}$$

Now, $BD = \boxed{}$

$$= 18,000 - 17,568$$

$$= ₹ 432$$

Also $BD = \boxed{}$

$$\therefore 432 = \frac{18,000 \times n \times 12}{100}$$

$$n = \frac{432 \times 100}{18,000 \times 12}$$

$$n = \frac{1}{5} \text{ years} = \boxed{} \text{ days}$$

The period for which the discount is deducted is 73 days, which is counted from the date of discounting i.e. 25th October 2017 :

October	November	December	January	Total
6	30	31	6	73

Hence legal due date is $\boxed{}$

(ii) Solve the following assignment problem for minimization :

	I	II	III	IV	V
1	18	24	19	20	23
2	19	21	20	18	22
3	22	23	20	21	23
4	20	18	21	19	19
5	18	22	23	22	21

Solution :

Step-I

Subtract the smallest element of each row from every element of that row

$$\begin{array}{c}
 \begin{array}{ccccc} \text{I} & \text{II} & \text{III} & \text{IV} & \text{V} \end{array} \\
 \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} \left[\begin{array}{ccccc} 0 & 6 & 1 & 2 & 4 \\ 1 & 3 & 2 & 0 & 3 \\ 2 & 3 & 0 & 1 & 3 \\ 2 & 0 & 3 & 1 & 1 \\ 0 & 4 & 5 & 4 & 3 \end{array} \right]
 \end{array}$$

Step-II

Subtract the smallest element of each column from every element of that column :

$$\begin{array}{c}
 \begin{array}{ccccc} \text{I} & \text{II} & \text{III} & \text{IV} & \text{V} \end{array} \\
 \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} \left[\begin{array}{ccccc} 0 & 6 & 1 & 2 & 4 \\ 1 & 3 & 2 & 0 & 3 \\ 2 & 3 & 0 & 1 & 2 \\ 2 & 0 & 3 & 1 & 0 \\ 0 & 4 & 5 & 4 & 2 \end{array} \right]
 \end{array}$$

Step-III

Draw minimum number of lines covering all zeros.

	I	II	III	IV	V
1	0	6	1	2	4
2	-1	-3	-2	-0	-3
3	-2	-3	-0	-1	-2
4	-2	-0	-3	-1	-0
5	0	4	5	4	2

Here minimum number of lines (4) < order of matrix (5)

Step-IV

The smallest uncovered element is 1, which is to be subtracted from all uncovered elements and add it to all elements which lie at the intersection of two lines :

	I	II	III	IV	V
1	0	5	0	□	3
2	2	3	2	0	3
3	3	3	0	□	2
4	3	0	3	1	0
5	0	3	4	3	□

Step-V

Draw minimum number of lines that are required to cover all zeros :

	I	II	III	IV	V
1	0	5	0	1	3
2	-2	-3	-2	-0	-3
3	3	3	0	1	2
4	-3	-0	-3	-1	-0
5	0	3	4	3	1

Here minimum number of lines \neq order of matrix.

Step-VI

Find the smallest uncovered element (1). Subtract this number from all uncovered elements and add it to all elements which lie at the intersection of two lines :

	I	II	III	IV	V
1	-0	-4	0	0	2
2	3	3	3	0	3
3	3	0	0	0	0
4	-4	0	-4	0	0
5	0	-2	-4	2	0

Now minimum number of lines = order of matrix.

The optimal assignment can be made.

Optimal solution is

1 → I

2 → IV

3 →

4 →

5 → V

Minimum value =

◆◆◆