

Total No. of Printed Pages—12

HS/XII/A. Sc. Com/M/25

2 0 2 5

MATHEMATICS

Full Marks : 80

Time : 3 hours

The figures in the margin indicate full marks for the questions

General Instructions :

- (i) All questions are compulsory.
- (ii) This question paper contains 36 questions divided into four Sections—A, B, C and D. Section—A comprises of 20 questions of 1 mark each, Section—B comprises of 6 questions of 2 marks each, Section—C comprises of 6 questions of 4 marks each and Section—D comprises of 4 questions of 6 marks each.
- (iii) There is no overall choice. However, internal choice has been provided in 9 questions of Section—A, 5 questions of Section—B, 5 questions of Section—C and 3 questions of Section—D. You have to attempt only one of the alternatives in all such questions.
- (iv) Use of calculator is not permitted.

(2)

SECTION—A

1. Find the principal value of $\cot^{-1}(\sqrt{3})$. 1

Or

Evaluate : $\sin^{-1} \frac{1}{2}$

1

2. Write the elements a_{23} and a_{32} of a 3×3 matrix $A = [a_{ij}]$, whose elements a_{ij} are given by $a_{ij} = \frac{|i-j|}{2}$. 1

3. Check the continuity of the function f given by $f(x) = 2x - 3$ at $x = 1$. 1

Or

Find the value of k , so that the function

$$f(x) = \begin{cases} kx^2, & \text{if } x \neq 2 \\ 3, & \text{if } x = 2 \end{cases}$$

is continuous at $x = 2$. 1

4. Define an equivalence relation. 1

Or

If $R = \{(1, 1), (2, 2), (3, 1)\}$ is a relation, then find the domain and the range of R . 1

(3)

5. Evaluate : $x \log 2x \, dx$

1

6. Find the equation of the line joining (1, 2) and (3, 6) using determinants.

1

Or

For what values of the matrix $\begin{matrix} 5 & 1 \\ 2 & 4 \end{matrix}$ is invertible?

1

7. The random variable X has a probability distribution $P(X)$ of the following form, where k is some real number :

$$P(X) = \begin{cases} k, & \text{if } X = 0 \\ 2k, & \text{if } X = 1 \\ 3k, & \text{if } X = 2 \\ 0, & \text{otherwise} \end{cases}$$

Determine the value of k .

1

8. Find an anti-derivative of $(ax - b)^2$ by the method of inspection.

1

Or

Find the order and degree of the differential equation

$$\frac{d^2y}{dx^2} - 5x \frac{dy}{dx}^2 - 6y = \log x$$

1

(4)

9. If θ is the angle between any two non-zero vectors \vec{a} and \vec{b} such that $|\vec{a} \cdot \vec{b}| = \vec{a} \cdot \vec{b}$, then find θ . 1

Or

If a line makes angles 90° , 135° and 45° with the x -, y - and z -axes respectively, then find its direction cosines. 1

10. Given two independent events A and B such that $P(A) = 0.3$ and $P(B) = 0.6$. Find $P(\text{neither } A \text{ nor } B)$. 1

11. Find the second-order derivative of $x \cos x$ w.r.t. x . 1

12. If $f : \mathbb{R} \rightarrow \mathbb{R}$ is a function defined by $f(x) = x^2$, $x \in \mathbb{R}$, then show that f is not one-one. 1

13. If $\int_0^a 3x^2 dx = 8$, then write the value of a . 1

Or

Differentiate $\sin^2 x$ w.r.t. $e^{\cos x}$. 1

14. Show that the function $f(x) = 3x - 17$ is strictly increasing on \mathbb{R} . 1

(5)

15. Show that the relation R in \mathbb{R} defined as $R = \{(a, b) : a = b\}$ is transitive. 1

16. Find $\frac{dy}{dx}$, if $ax - by^2 = \cos y$. 1

Or

Find the integral $\int \frac{\log x}{x} dx$. 1

Choose the correct answer :

17. The integrating factor of the differential equation

$x \frac{dy}{dx} - y = 2x^2$ is

(a) e^{-x}

(b) e^{-y}

(c) $\frac{1}{x}$

(d) x 1

18. The maximum value of the objective function $Z = 3x + 4y$ subject to the constraints $x \geq 0$, $y \geq 0$ and $x + y \leq 1$ is

(a) 7

(b) 4

(c) 3

(d) 10 1

(6)

19. If \vec{a} is a non-zero vector of magnitude 'a' and ' ' is a non-zero scalar, then \vec{a} is a unit vector if

(a) 1

(b) 1

(c) $a | |$

(d) $a \frac{1}{| |}$

1

Or

The value of $\hat{i} (\hat{j} \hat{k}) \hat{j} (\hat{i} \hat{k}) \hat{k} (\hat{i} \hat{j})$ is

(a) 0

(b) 1

(c) 1

(d) 3

1

20. $e^x \sec x (1 - \tan x) dx$ is equal to

(a) $e^x \cos x - c$

(b) $e^x \sec x - c$

(c) $e^x \sin x - c$

(d) $e^x \tan x - c$

1

(7)

SECTION—B

21. Find the vector and the Cartesian equations of the line through the point $(5, 2, -4)$ and which is parallel to the vector $3\hat{i} - 2\hat{j} - 8\hat{k}$. 2

22. Evaluate the integral : 2

$$\int_0^{/2} \frac{\sin x}{1 - \cos^2 x} dx$$

Or

Find $\frac{dy}{dx}$, if $x = a(\cos \theta - \sin \theta)$ and $y = a(\sin \theta + \cos \theta)$. 2

23. Find the unit vector in the direction of vector \overrightarrow{PQ} , where P and Q are the points $(1, 2, 3)$ and $(4, 5, 6)$ respectively. 2

Or

Find $|\vec{a} - \vec{b}|$, if two vectors \vec{a} and \vec{b} are such that $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 4$. 2

(8)

24. Find the values of x, y and z from the following equation : 2

$$\begin{array}{rccccc} x & y & 2 & 6 & 2 \\ 5 & z & xy & 5 & 8 \end{array}$$

Or

If $A = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$, then show that $A^2 - 5A - 7I = 0$. 2

25. Find the interval in which the function given by $f(x) = x^2 - 2x - 5$ is strictly increasing. 2

Or

Evaluate : $\int e^x (\sin x - \cos x) dx$ 2

26. Find the values of p so that the lines

$$\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2} \quad \text{and} \quad \frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$$

are at right angles. 2

Or

If $\vec{a} = 2\hat{i} - 2\hat{j} + 3\hat{k}$, $\vec{b} = \hat{i} - 2\hat{j} - \hat{k}$ and $\vec{c} = 3\hat{i} - \hat{j}$ are such that $\vec{a} \cdot \vec{b}$ is perpendicular to \vec{c} , then find the value of . 2

(9)

SECTION—C

27. By using the properties of definite integrals, evaluate the integral

$$\int_0^4 \log(1 - \tan x) dx \quad 4$$

Or

Find $\int \frac{3x^2}{(x-1)^2(x-3)} dx. \quad 4$

28. A particle moves along the curve $6y = x^3 - 2$. Find the points on the curve at which the y -coordinate is changing 8 times as fast as the x -coordinate. 4

Or

Find the intervals in which the function f given by $f(x) = 2x^3 - 3x^2 - 36x + 7$ is (a) increasing and (b) decreasing. 2+2

29. Let $f : X \rightarrow Y$ be a function. Define a relation R in X given by $R = \{(a, b) : f(a) = f(b)\}$. Show that R is an equivalence relation. 4

Or

Show that the function $f : \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = 3 - 4x$ is bijective. 4

(10)

30. Find $\frac{dy}{dx}$, if $y = x^{x \cos x} \cdot \frac{x^2 - 1}{x^2 + 1}$. 4

Or

If $y = 3 \cos(\log x) + 4 \sin(\log x)$, then show that
 $x^2 y_2 - x y_1 - y = 0$. 4

31. Solve the following linear programming problem graphically : 4

Maximize $Z = 4x + y$

subject to the constraints

$$\begin{aligned} x + y &\leq 50 \\ 3x + y &\leq 90 \\ x &\geq 0, y \geq 0 \end{aligned}$$

32. Find the equation of the curve passing through the point

$0, \frac{1}{4}$ whose differential equation is

$$\sin x \cos y \, dx - \cos x \sin y \, dy = 0 4$$

Or

Solve the homogeneous differential equation

$$(x^2 - xy) \, dy - (x^2 - y^2) \, dx = 0 4$$

(11)

SECTION—D

33. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is $\frac{2R}{\sqrt{3}}$. Also find the maximum volume. 6

Or

Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ above x -axis. 6

34. If $A = \begin{pmatrix} 2 & 3 & 5 \\ 1 & 2 & 4 \\ 1 & 1 & 2 \end{pmatrix}$, then find A^{-1} . Using A^{-1} , solve the following system of equations : 6

$$\begin{array}{rcl} 2x & 3y & 5z = 11 \\ 3x & 2y & 4z = 5 \\ x & y & 2z = 3 \end{array}$$

35. Find the Cartesian equation of the line passing through the point $(1, 2, 4)$ and perpendicular to the two lines

$$\frac{x}{3} = \frac{y}{16} = \frac{z}{7} \quad \text{and} \quad \frac{x}{3} = \frac{y}{8} = \frac{z}{5}$$

Also write the vector form of the line so obtained. 5+1

(12)

Or

Find the shortest distance between the lines whose vector equations are

$$\begin{aligned}\vec{r} &= (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k} \text{ and} \\ \vec{r} &= (s-1)\hat{i} + (2s-1)\hat{j} + (2s-1)\hat{k}\end{aligned}$$

6

36. State Bayes' theorem on probability. Use this theorem to solve any *one* of the following : 1+5

(a) Bag *I* contains 3 red and 4 black balls and Bag *II* contains 4 red and 5 black balls. One ball is transferred from Bag *I* to Bag *II* and then one ball is drawn from Bag *II*. The ball so drawn is found to be red in colour. Find the probability that the transferred ball is black.

Or

(b) A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

★ ★ ★