

Total No. of Printed Pages—11

HS/XII/A. Sc. Com/M/24

2 0 2 4

MATHEMATICS

Full Marks : 80

Time : 3 hours

The figures in the margin indicate full marks for the questions

General Instructions :

- (i) All questions are compulsory.
- (ii) This question paper contains 36 questions divided into four Sections—A, B, C and D. Section—A comprises of 20 questions of 1 mark each, Section—B comprises of 6 questions of 2 marks each, Section—C comprises of 6 questions of 4 marks each and Section—D comprises of 4 questions of 6 marks each.
- (iii) There is no overall choice. However, internal choice has been provided in 7 questions of Section—A, 3 questions of Section—B, 5 questions of Section—C and 2 questions of Section—D. You have to attempt only one of the alternatives in all such questions.
- (iv) Use of calculator is not permitted.

(2)

SECTION—A

1. Find the principal value of $\sin^{-1} \frac{1}{2}$. 1

2. Differentiate w.r.t. x : 1

$$y = \log(\log x), \quad x = 1$$

3. Construct a 2×2 matrix $A = [a_{ij}]$, where $a_{ij} = \frac{(i-2j)^2}{2}$. 1

Or

Find the values of x and y , if

$$\begin{array}{ccc} 3x & y & y \\ 2x & y & 3 \end{array} \quad \begin{array}{cc} 1 & 2 \\ 4 & 3 \end{array}$$

1

4. Find the unit vector in the direction of the sum of the vectors $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j} + 3\hat{k}$. 1

5. Find the Cartesian equation of the line which passes through the point $(-2, 4, -5)$ and parallel to the line given by

$$\frac{x-3}{3} = \frac{y-4}{5} = \frac{z-8}{6}$$

1

(3)

6. Integrate the function $\sin x \sin(\cos x)$. 1

Or

Evaluate the definite integral $\int_0^1 \frac{dx}{\sqrt{1-x^2}}$. 1

7. Find $\frac{dy}{dx}$ for the following : 1

$$2x - 3y - \sin y$$

8. Evaluate : 1

$$\int_{\pi/2}^{3\pi/2} \sin^7 x \, dx$$

9. Find the direction cosines of the vector $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$. 1

Or

Find the scalar and vector components of the vector with initial point $(2, 1)$ and terminal point $(-5, 7)$. 1

10. Find the value of k , if the function given by

$$f(x) = \begin{cases} kx^2, & x \neq 1 \\ 4, & x = 1 \end{cases}$$

is continuous at $x = 1$. 1

(4)

11. Differentiate $\log(\cos e^x)$ w.r.t. x .

1

Or

Find $\frac{dy}{dx}$, if $x = a \cos \theta$ and $y = a \sin \theta$.

1

12. The radius of a circle is increasing at the rate of 0.7 cm/s.

What is the rate of increase in its circumference?

1

13. Find the second-order derivative of $\log x$.

1

14. Examine the continuity of the function $f(x) = 5x - 3$

at $x = 5$.

1

15. Evaluate :

$$\frac{dx}{\sqrt{9 - 25x^2}}$$

Or

Integrate w.r.t. x :

$$\frac{1}{x - x \log x}$$

(5)

16. Verify that $y = e^x - 1$ is a solution of the differential equation $y' = y - 0$. 1

Or

Find the general solution of the differential equation $\frac{dy}{dx} = \frac{1 - y^2}{1 - x^2}$. 1

Choose the correct answer :

17. Let R be the relation in the set \mathbb{N} given by $R = \{(a, b) : a = b, b \geq 6\}$. Then

- (a) $(2, 4) \in R$
- (b) $(3, 8) \in R$
- (c) $(6, 8) \in R$
- (d) $(8, 7) \in R$ 1

18. The corner points of the feasible region determined by a system of linear constraints are $(0, 0)$, $(0, 40)$, $(20, 40)$, $(60, 20)$ and $(60, 0)$. The maximum value of $Z = 4x + 3y$ is

- (a) 120
- (b) 240
- (c) 300
- (d) 200 1

(6)

19. The matrix $\begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}$ is a

(a) diagonal matrix

(b) row matrix

(c) column matrix

(d) unit matrix

1

Or

The square matrices A and B will be inverse of each other, if

(a) $AB = O, BA = I$

(b) $AB = BA = O$

(c) $AB = BA = I$

(d) $AB = I, BA = O$

1

20. The value of $(\hat{i} \quad \hat{j}) \quad \hat{k} \quad (\hat{j} \quad \hat{k}) \quad \hat{i}$ is

(a) 1

(b) 2

(c) 0

(d) 1

1

(7)

SECTION—B

21. Show that the function $f : \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = \frac{1}{2x}$ is onto. Here, \mathbb{R} is the set of non-zero real numbers. 2

Or

Let $A = \mathbb{R} \setminus \{3\}$ and $B = \mathbb{R} \setminus \{1\}$. Consider the function $f : A \rightarrow B$ defined by $f(x) = \frac{x-2}{x-3}$. Show that f is one-one. 2

22. Prove that the function $f(x) = \log x$ is strictly increasing on the interval $(0, \infty)$. 2

23. Evaluate : 2

$$\frac{dx}{(x-1)(x-2)}$$

Or

Find $\frac{dy}{dx}$, if $xy = y^2 = \tan x = y$. 2

24. If $y = 5\cos x - 3\sin x$, then prove that

$$\frac{d^2y}{dx^2} = y = 0 \quad 2$$

Or

Find $\frac{dy}{dx}$, if $x = a(\theta - \sin \theta)$ and $y = a(1 - \cos \theta)$. 2

(8)

25. Given that the events A and B are such that $P(A) = \frac{1}{2}$,

$P(B) = p$ and $P(A \cap B) = \frac{3}{5}$. Find p , if A and B are independent.

2

26. Using determinants, find the value of k so that the points $(3, -2)$, $(k, 2)$ and $(8, 8)$ lie on the same line.

2

SECTION—C

27. Using integrals, find the area enclosed by the circle $x^2 + y^2 = 4$.

4

Or

Evaluate :

4

$$\frac{2x - 1}{\sqrt{x^2 - 4x + 3}} dx$$

28. Differentiate $(\log x)^{\cos x}$ w.r.t. x .

4

Or

Using the properties of definite integral, evaluate

$$\int_0^{\pi/2} (2 \log \sin x - \log \sin 2x) dx$$

4

(9)

29. Show that the relation R on \mathbb{Z} given by $R = \{(x, y) : x - y \text{ is divisible by } 2\}$ is an equivalence relation. 4

Or

Let A and B be two sets. Show that $f : A \rightarrow B \rightarrow A$ such that $f(a, b) = (b, a)$ is one-one and onto. 4

30. Solve the following LPP graphically : 4

$$\text{Minimize } Z = 200x + 500y$$

subject to

$$\begin{aligned} x + 2y &= 10 \\ 3x + 4y &= 24 \\ x, y &\geq 0 \end{aligned}$$

31. Find the angle between the two lines whose equations are

$$\frac{x-3}{3} = \frac{y-1}{5} = \frac{z-3}{4} \quad \text{and} \quad \frac{x-1}{1} = \frac{y-4}{1} = \frac{z-5}{2} \quad \text{4}$$

Or

Find and , if $(2\hat{i} - 6\hat{j} + 27\hat{k}) \cdot (\hat{i} + \hat{j} + \hat{k}) = \vec{0}$. 4

32. Find the intervals in which the function f given by $f(x) = 2x^3 - 3x^2 - 36x - 7$ is—

(a) strictly increasing;

(b) strictly decreasing. 4

(10)

Or

If $y = e^{a \cos^{-1} x}$, $1 \leq x \leq 1$, then show that

$$(1 - x^2)y_2 - xy_1 - a^2y = 0$$

4

SECTION—D

33. Solve the following system of linear equations :

6

$$\begin{array}{cccc} x & y & z & 6 \\ x & y & z & 2 \\ 2x & y & z & 1 \end{array}$$

34. Find the shortest distance between the lines l_1 and l_2 , whose vector equations are

$$\vec{r} = (\hat{i} \quad \hat{j}) + (2\hat{i} \quad \hat{j} \quad \hat{k})$$

$$\vec{r} = (2\hat{i} \quad \hat{j} \quad \hat{k}) + (3\hat{i} \quad 5\hat{j} \quad 2\hat{k})$$

6

35. Show that a closed right circular cylinder of given total surface area and maximum volume is such that its height is equal to its diameter.

6

Or

Solve the linear differential equation

$$\cos^2 x \frac{dy}{dx} - y \tan x = 0 \quad x = \frac{\pi}{4}$$

given that $y = 1$, when $x = 0$.

6

(11)

36. State Bayes' theorem and use it to solve the following : 2+4=6

In answering a question on a multiple choice test, a student either knows the answer or guesses. Let $3/4$ be the probability that he knows the answer and $1/4$ be the probability that he guesses. Assuming that a student who guesses at the answer will be correct with probability $1/4$, what is the probability that the student knows the answer given that he answered it correctly?

Or

A random variable X has the following probability distribution :

X	0	1	2	3	4	5	6	7
$P(X)$	0	k	$2k$	$2k$	$3k$	k^2	$2k^2$	$7k^2$

Determine the following :

6

- (i) k
- (ii) $P(X = 3)$
- (iii) $P(X = 6)$
- (iv) $P(0 < X < 3)$

★ ★ ★