

2 0 2 4

PHYSICS

(Theory)

Full Marks : 70

Time : 3 hours

The figures in the margin indicate full marks for the questions

General Instructions :

- (i) There are **31** questions in all. All questions are compulsory.
- (ii) This Question Paper has four Sections : Section—A (Part—I and Part—II), Section—B, Section—C and Section—D.
- (iii) Section—A (Part—I) contains five multiple choice questions of 1 mark each and Section—A (Part—II) contains five questions of 1 mark each. Section—B contains nine questions of 2 marks each, Section—C contains nine questions of 3 marks each and Section—D contains three questions of 5 marks each.
- (iv) There is no overall choice. However, internal choices have been provided in three questions of 1 mark, four questions of 2 marks, five questions of 3 marks and all the three questions of 5 marks weightage. You have to attempt only one of the choices in such questions.

(2)

(v) You may use the following values of physical constants, wherever necessary :

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} \text{ J-s}$$

$$e = 1.6 \times 10^{-19} \text{ C}$$

$$\mu_0 = 4 \times 10^{-7} \text{ T m A}^{-1}$$

$$\epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$

$$m_e = 9.1 \times 10^{-31} \text{ kg}$$

$$\text{Mass of neutron} = 1.00867 \text{ amu} = 1.675 \times 10^{-27} \text{ kg}$$

$$\text{Mass of proton} = 1.00728 \text{ amu} = 1.673 \times 10^{-27} \text{ kg}$$

$$\text{Mass of } \alpha\text{-particle} = 4.00152 \text{ amu} = 6.646 \times 10^{-27} \text{ kg}$$

SECTION—A

PART—I

(Multiple choice type questions)

Choose and write the correct option for the following : 1×5=5

1. The core in transformers and other electromagnetic devices is laminated, so as to

- (a) increase the magnetic field
- (b) increase the magnetic flux
- (c) reduce the magnetism in the core
- (d) reduce the eddy current losses in the core

1

(3)

2. In Young's double-slit experiment, a monochromatic ray of light of wavelength 5×10^{-5} cm falls on double-slit of slit width 0.025 mm. If the phenomenon of interference is observed on the screen at a distance of 5 cm, the fringe width becomes

(a) 0.1 mm
(b) 1 mm
(c) 0.01 mm
(d) None of the above 1

3. A short bar magnet placed with its axis at 30° with an external magnetic field of 800 G experiences a torque of 0.016 N-m. What is the magnetic moment of the magnet?

(a) 0.40 A-m²
(b) 0.004 A-m²
(c) 0.80 A-m²
(d) 0.02 A-m² 1

4. If \vec{E} and \vec{B} represent electric and magnetic field vectors of the electromagnetic waves, then the direction of propagation of the electromagnetic waves is that of

(a) \vec{E}
(b) \vec{B}
(c) $\vec{E} \times \vec{B}$
(d) $\vec{E} \times \vec{B}$ 1

(4)

5. *n*-type semiconductor is obtained by doping the intrinsic semiconductor with

- (a) trivalent material
- (b) conductor
- (c) insulator
- (d) pentavalent material

1

PART—II

(Very short answer type questions)

Answer each of the following questions in 1 sentence/step : $1 \times 5 = 5$

6.

Either

If an intrinsic semiconductor is doped with a monovalent material, what type of extrinsic semiconductor will we get?

1

Or

What happens to the width of the depletion layer when the junction is under reverse bias?

1

7.

What is meant by the term doping?

1

8.

Either

Why is there no photoelectric current at frequencies below threshold frequency?

1

Or

Write down the Einstein photoelectric equation.

1

(5)

9. *Either*

A semi-circular arc of radius 20 cm carries a current of 10 A. What is the magnitude of the magnetic field at the centre of the arc? 1

Or

A galvanometer with a coil of resistance 12.0 shows full-scale deflection for a current 2.5 mA. How will you convert the galvanometer into an ammeter of range 0 to 7.5 A? 1

10. Arrange the following electromagnetic radiations in descending order of their frequencies : 1

X-rays, Visible light, Ultraviolet rays, Radio waves

SECTION—B

(Short answer type—I questions)

Answer each of the following questions within 20 to 30 words, wherever applicable : $2 \times 9 = 18$

11. *Either*

What is nuclear fusion? Write the underlying principle of atom bomb. $1+1=2$

Or

Write two defects of Rutherford's atomic model. 2

12. *Either*

The radii of curvature of a double-convex lens are 15 cm and 30 cm and its refractive index is 1.5. Calculate its power. 2

(6)

Or

A convex lens of focal length 30 cm and a concave lens of focal length 60 cm are placed in contact. Find the power of the combination.

2

13. An iron-cored solenoid and a bulb are connected to an a.c. source. If the iron core is removed from the solenoid, the brightness of the bulb decreases. Why?

2

14. *Either*

State two conditions to be fulfilled by a ray of light in the phenomenon of total internal reflection. Name one technological application of total internal reflection.

2

Or

State two conditions, which must be satisfied for two light sources to be coherent. Can two independent sources of light be coherent?

2

15. Show that the de Broglie wavelength of an electron of kinetic energy K is given by $\frac{h}{\sqrt{2mK}}$, where m is the mass of electron and h is Planck's constant.

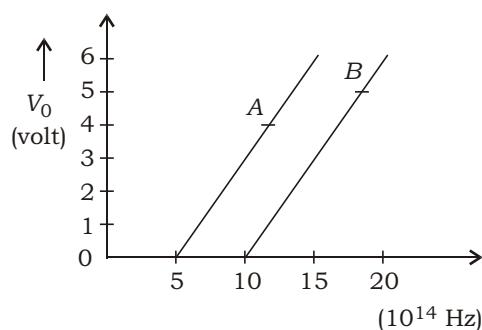
2

16. *Either*

The ground state energy of H-atom is 13.6 eV. What are the kinetic and potential energies of the electron in this state?

2

Or


A hydrogen atom initially in the ground level absorbs a photon which excites it to the $n = 4$ level. Determine the wavelength and frequency of the photon.

2

(7)

17. An n -type semiconductor has a large number of electrons but still it is electrically neutral. Explain the reason. 2

18. A student performs an experiment on photoelectric effect using two materials A and B . A plot of stopping potential (V_0) and frequency () is given in the figure :

Which material, A or B , has greater work function ()?
Justify your answer. 2

19. Write Biot-Savart law in vector form. What is the limitation of Biot-Savart law? 1+1=2

SECTION—C

(Short answer type-II questions)

Answer each of the following questions within 30 to 40 words,
wherever applicable : 3×9=27

20. *Either*

Draw a ray diagram of an astronomical telescope showing the final image at infinity and write the expression of its magnifying power. 3

HS/XII/Sc/Ph/24/**29** [P.T.O.

(8)

Or

With the help of a ray diagram, show that the total deviation of a ray of light passing through a glass prism is given by $i - e - A$, where the symbols used carry usual meanings. 3

21. *Either*

Distinguish between conductors, semi-conductors and insulators on the basis of band theory of solids. 1+1+1=3

Or

Draw a circuit diagram of a full-wave rectifier. Explain its working and show the input, output waveforms. 1+1+1=3

22. State Ampere's circuital law. Using this law, obtain the expression for the magnetic field near an infinitely long current-carrying wire. 1+2=3

23. *Either*

Write the expression of Lorentz force. Obtain the force on a current-carrying conductor in a uniform magnetic field.

1+2=3

Or

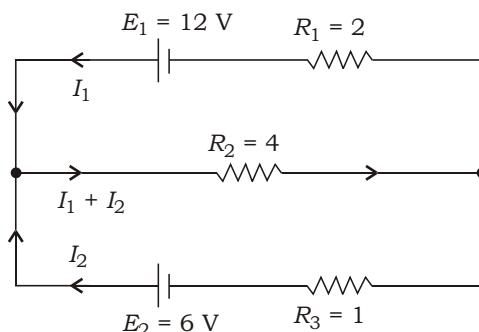
What is a magnetic moment? Obtain the magnetic moment of a revolving electron around the nucleus. 1+2=3

24. Give one point of difference between the e.m.f. and the terminal potential difference of a cell. Show that the internal resistance of a cell is $r = \frac{E - V}{V} R$, where E and V are the e.m.f. and potential difference of the cell and R is the load resistance. 1+2=3

(9)

25.

Either


Show that the torque acting on an electric dipole placed in a uniform electric field \vec{E} is $\vec{p} \cdot \vec{E}$, where \vec{p} and $\vec{\tau}$ represent the dipole moment and torque respectively. 3

Or

What is resistance of a resistor? Show that the equivalent resistance of three resistors connected in series is equal to the sum of the resistances of the individual resistors.

1+2=3

26. Using Kirchhoff's laws in the electrical network, calculate I_1 , I_2 and the rate of dissipation of energy in R_2 : 1+1+1=3

27.

Either

The relative magnetic permeability of a magnetic material is 800. Identify the type of the magnetic material and state two of its properties. 1+2=3

Or

What are magnetic field lines? Can two magnetic field lines intersect? Justify your answer. 1+1+1=3

(10)

28. What holds nucleons together in the nucleus? Calculate the binding energy of an α -particle. 1+2=3

SECTION—D

(Long answer type questions)

Answer each of the following questions within 70 to 80 words, wherever applicable : 5×3=15

29. *Either*
What is electric flux? Using Gauss' law, find the electric field due to a uniformly charged thin spherical shell of uniform surface charge density () at a point (a) inside the shell and (b) outside the shell. 1+2+2=5

Or

What are polar and non-polar molecules? Deduce an expression for the capacitance of a capacitor with a dielectric substance of dielectric constant K and thickness t such that the thickness is less than the separation between the plates (d). 1+1+3=5

30. *Either*
Give the construction and theory of an a.c. generator. 2+3=5

Or

Derive an expression for average power in $L-C-R$ circuit connected to an a.c. supply. What is wattless current? 4+1=5

(11)

31.

Either

What is a wavefront? Establish the laws of refraction on
the basis of Huygen's principle. $1+4=5$

Or

What is interference of light waves? Deduce analytically
the conditions for constructive and destructive inter-
ference of two coherent light waves. $1+2+2=5$

★ ★ ★