

Total No. of Printed Pages—12

HS/XII/Sc/Ch/24

2 0 2 4

CHEMISTRY

(Theory)

Full Marks : 70

Time : 3 hours

The figures in the margin indicate full marks for the questions

General Instructions :

- (i) Attempt all parts of a question together in one place.
- (ii) All questions are compulsory.
- (iii) Section—A : Question Nos. **1** to **5** are of multiple choice type, each carrying **1** mark.
- (iv) Section—B : Question Nos. **6** to **12** are of short answer-type questions and carry **2** marks each.
- (v) Section—C : Question Nos. **13** to **24** are also short answer-type questions and carry **3** marks each.
- (vi) Section—D : Question Nos. **25** to **27** are long answer-type questions and carry **5** marks each.

(2)

- (vii) There is no overall choice. However, an internal choice has been provided in four questions of 2 marks, four questions of 3 marks, and all three questions of 5 marks weightage. Students have to attempt only one of the choices in such questions.
- (viii) Use of non-programmable ordinary scientific calculators and log tables are allowed.
- (ix) Mobile phones and pagers are not allowed inside the Examination Hall.

SECTION—A

(*Marks : 5*)

Choose and write the correct answers for the following in the answer script :

- 1.** When benzoic acid is dissolved in benzene, the van't Hoff factor will be

 - (a) 1
 - (b) 0.5
 - (c) 2
 - (d) 1.5
- 2.** A device that converts energy of combustion of fuels like hydrogen and methane directly into electrical energy is known as

 - (a) fuel cell
 - (b) electrolytic cell
 - (c) dynamo
 - (d) Nickel-Cadmium cell

1

1

(3)

3. The number of d -electrons in $[\text{Cr}(\text{H}_2\text{O})_6]^{3-}$ ion (atomic number of Cr 24) is

- (a) 2
- (b) 3
- (c) 4
- (d) 5

1

4. The existence of two different coloured complexes with composition of $[\text{Co}(\text{NH}_3)_4\text{Cl}_2]$ is due to

- (a) linkage isomerism
- (b) geometrical isomerism
- (c) coordination isomerism
- (d) ionization isomerism

1

5. The strongest acid among the following aromatic compounds is

- (a) *o*-nitrophenol
- (b) *p*-chlorophenol
- (c) *p*-nitrophenol
- (d) *m*-nitrophenol

1

(4)

SECTION—B

(Marks : 14)

6.

Either

(a) Show that the half-life period of a first-order reaction is independent of the initial concentration of the reactant. 2

Or

(b) A first-order reaction has a rate constant of 10^{-3} sec⁻¹. How much time will it take for 10 g of the reactant to reduce to 2.5 g?

7. (a) When does average rate become equal to instantaneous rate? 1

(b) Write any one condition under which a bimolecular reaction may kinetically become first order. 1

8.

Either

(a) Why are Mn²⁺ compounds more stable than Fe²⁺ compounds towards oxidation to their 3 state? 2

Or

(b) Write any two consequences of lanthanoid contraction. 2

9.

Either

(a) Give one example of a complex showing linkage isomerism. 1

(5)

(b) Write the IUPAC name of the complex $[\text{Cr}(\text{NH}_3)_3(\text{H}_2\text{O})_3]\text{Cl}_3$. 1

Or

(c) Explain, on the basis of valence bond theory, why $[\text{NiCl}_4]^2$ is paramagnetic while $[\text{Ni}(\text{CO})_4]$ is diamagnetic though both are tetrahedral. 2

10.

Either

(a) Name the reagent(s) used in the following conversions : 1+1=2

(i) Ethanoic acid to ethanol

(ii) Bromination of phenol to 2,4,6-trinitrophenol

Or

(b) How would you convert methyl magnesium bromide to 2-methyl propan-2-ol? 2

11. (a) Name two components of starch. 1

(b) Which vitamin deficiency causes poor coagulation of blood? 1

12. (a) What do you mean by glycosidic linkage? 1

(b) Write the structure of product formed when D-glucose is treated with NH_2OH . 1

(6)

SECTION—C

(Marks : 36)

13.

Either

(a) Give one example of a solution showing positive deviation from Raoult's law. 1

(b) The vapour pressure of pure benzene at certain temperature is 0.850 bar. A non-volatile non-electrolyte solute weighing 0.5 g is added to 39 g of benzene. The vapour pressure of the solution is 0.845 bar. What is the molar mass of the solute added? (Given, molar mass of benzene 78 g mol⁻¹) 2

Or

(c) What are azeotropic mixtures? 1

(d) Calculate the mole fraction of ethylene glycol (C₂H₆O₂) in an aqueous solution containing 20% of ethylene glycol by mass. 2

14.

(a) What are isotonic solutions? 1

(b) A solution is prepared by dissolving 60 g of glucose (C₆H₁₂O₆) in 250 g of water. Calculate the freezing point of the solution. (K_f for H₂O 1.86 K kg mol⁻¹) 2

15.

Either

(a) What is the difference between electrochemical cell and electrolytic cell? 1

(b) Why does a dry cell become dead after a long time even if it has been not in use? 1

(c) What is cathodic protection? 1

(7)

Or

(d) When a current of 0.75 A is passed through CuSO_4 solution for 25 minutes, 0.369 g of copper is deposited at the cathode. Calculate the atomic mass of copper. ($F = 96500\text{ C mol}^{-1}$) 2

(e) Write the products of electrolysis of NaCl (aq) solution. 1

16. (a) What is the order of a reaction whose rate constant has same unit as the rate of reaction? 1

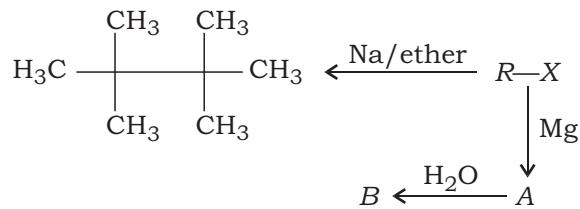
(b) The rate constants of a reaction at 500 K and 700 K are 0.02 s^{-1} and 0.07 s^{-1} respectively. Calculate the activation energy of the reaction. ($R = 8.314\text{ J K}^{-1}\text{ mol}^{-1}$) 2

17. (a) What is crystal field splitting energy? 1

(b) Write the coordination number and oxidation state of Pt in the complex $[\text{Pt}(\text{en})_2\text{Cl}_2]$. 1

(c) Name the type of hybridization of central metal atom in the complex $[\text{Fe}(\text{H}_2\text{O})_6]^{2-}$. (Given atomic number of Fe = 26) 1

18. *Either*


(a) Arrange the following compounds in order of their increasing boiling points : 1

Bromomethane, Bromoform, Chloromethane,
Dibromomethane

(8)

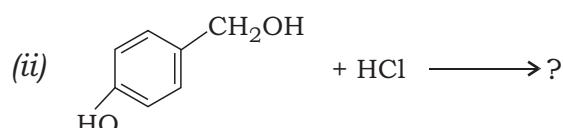
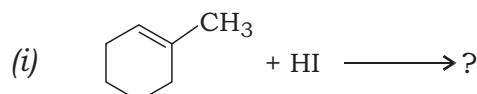
(b) Identify A , B and R in the given sequence of reactions :

2

Or

(c) Arrange the following compounds in order of their reactivity towards S_N2 reaction :

1



2-bromo-2-methylbutane, 1-bromobutane,
2-bromobutane

(d) How would you convert 1-bromopropane to butanoic acid?

2

19. Complete the following reactions :

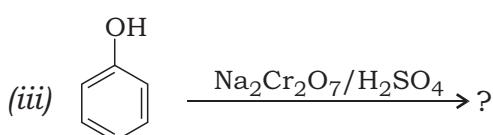
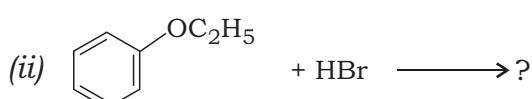
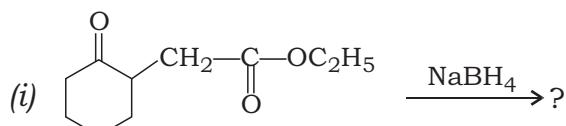
$1 \times 3 = 3$

20.

Either

(a) Write the chemical equation for Kolbe's reaction.

1




(b) Give the mechanism of acid catalyzed hydration of ethene.

2

(9)

Or

(c) Complete the following reactions : $1 \times 3 = 3$

21. (a) Arrange the following in increasing order of their acidic character : 1

(b) How would you obtain the following? 1+1=2

(i) Benzoic acid from ethyl benzene

(ii) Butanoic acid from 1-chlorobutane

22. (a) Why do amines act as nucleophiles? 1

(b) How would you convert ethanoic acid into methanamine? 2

23. (a) Name a test to distinguish between aniline and N-methylaniline. 1

(b) Complete the following reactions : $1 \times 2 = 2$

(10)

24. (a) What are nucleotides? 1
(b) What are essential and non-essential amino acids?
Give one example of each type. 2

SECTION—D

(Marks : 15)

25. *Either*

(a) Represent the cell in which the following cell reaction takes place :
$$\text{Zn (s)} \quad 2\text{Ag (aq)} \quad \text{Zn}^2 \text{ (aq)} \quad 2\text{Ag (s)}$$

Which one of the electrodes is negatively charged? $1+1=2$

(b) State Kohlrausch's law. 1
(c) Calculate the molar conductivity of Al^3 ions at infinite dilution. Given that the molar conductivity of $\text{Al}_2(\text{SO}_4)_3$ and ionic conductivity of SO_4^2 ion at infinite dilution are $858 \text{ S cm}^2 \text{ mol}^{-1}$ and $160 \text{ S cm}^2 \text{ mol}^{-1}$ respectively. 2

Or

(d) What is electrochemical series? 1
(e) Why is it necessary to use salt bridge in a galvanic cell? 1

(11)

(f) Arrange the following metals in increasing order of their reducing power :

Zn, Ag, Ni, Cu

Given :

$$E_{\text{Zn}^{2+}/\text{Zn}}^{\circ} = 0.76 \text{ V}, \quad E_{\text{Ag}^{+}/\text{Ag}}^{\circ} = 0.80 \text{ V},$$

$$E_{\text{Ni}^{2+}/\text{Ni}}^{\circ} = 0.25 \text{ V}, \quad E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = 0.34 \text{ V} \quad 1$$

(g) The cell potential for the cell reaction

is 1.30 V at 25 °C . Calculate its standard cell potential. 2

26. *Either*

(a) Why do transition elements show variable oxidation states? 1

(b) Why are Zn^{2+} salts white whereas Cu^{2+} salts are coloured? 1

(c) Draw the structure of a permanganate ion (MnO_4^-). 1

(d) Give the reactions of KMnO_4 with KI and FeSO_4 in acidic medium. 1+1=2

Or

(e) Write the highest oxidation state shown by an element with atomic number 23. 1

(f) What do you mean by disproportionation reaction?
Give one example. 1+1=2

(12)

(g) Give reasons for the following : 1+1=2

- Transition metals and their compounds generally exhibit paramagnetic behaviour.
- Manganese exhibits the highest oxidation state of +7 among 3d series of transition elements.

27.

Either

(a) Arrange the following compounds in increasing order of their reactivity in nucleophilic addition reactions : 1

Ethanal, Propanal, Butanone, Propanone

(b) Identify the compounds *A* and *B* in the following sequence of reactions : 2

(c) Give the products of the following reactions : 1×2=2

Or

(d) Name the test to distinguish between propanal and propanone. 1

(e) How would you convert ethanal into but-2-enal in not more than two steps? 2

(f) Write the structures of *A* and *B* in the following sequence of reactions : 2

★ ★ ★