

BOARD OF SCHOOL EDUCATION HARYANA
MARKING SCHEME
CLASS: 12th (Sr. Secondary)

Practice Paper 2025 – 26

SET – A

गणित

[MATHEMATICS]

[ENGLISH MEDIUM]

- मार्किंग स्कीम में दिए गए हल केवल एक विधि है इसके अतिरिक्त सब विधियां भी बराबर मान्य होंगी यदि वे गणितीय रूप से सही हैं।
- The solution methods adopted in the marking scheme are suggestive. Different methods are also acceptable if these are mathematically correct.

Section -A : (1 Mark each)

Question No.	Answer	Hints/ Solution
1.	$\frac{3\pi}{4}$	$\cos^{-1}(-\frac{1}{\sqrt{2}}) = \pi - \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) \\ = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$
2.	C	Skew Symmetric
3.	D	$A^{-1} \text{ exists if } A \neq 0 \Rightarrow \lambda \neq \frac{-8}{5}$
4.	C	$\text{put } \Delta = 86 \Rightarrow a = -7, 3$
5.	$\frac{1}{x \log 7 \log x}$	$y = \log_7(\log x) = \frac{\log(\log x)}{\log 7}$
6.	2	$\frac{df}{dg} = \frac{f'(x)}{g'(x)} = \frac{-2\sqrt{1-x^2}}{-1\sqrt{1-x^2}} = 2$

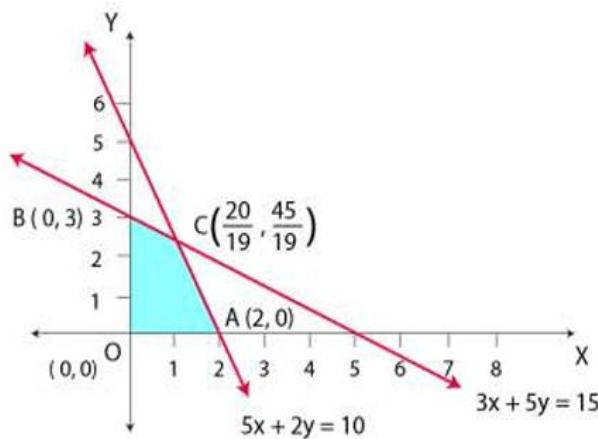
7.	D	$\frac{g(x)}{f(x)}$ may be discontinuous at $x = 0$; all other are definitely continuous.
8.	$10\sqrt{3} \text{ cm}^2/\text{s}$	$\frac{dA}{dt} = \frac{\sqrt{3}}{4} \cdot 2x \cdot \frac{dx}{dt} = \frac{\sqrt{3}}{2} \cdot 10 \cdot 2 = 10\sqrt{3} \text{ cm}^2/\text{s}$
9.	B	$\int \frac{1 \cdot dx}{\sin^2 x \cdot \cos^2 x} = \int \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cdot \cos^2 x} dx$ $\int (\sec^2 x + \operatorname{cosec}^2 x) dx = \tan x - \cot x + c$
10.	D	$\frac{dy}{dx} = \frac{x}{y} \Rightarrow \int y dy = \int x dx$ $y^2 - x^2 = c$
11.	B	Put $\sin x = t \Rightarrow \cos x dx = dt$
12.	1	Since the highest power raised to $\frac{d^2y}{dx^2}$ is one.
13.	B	$\pm(\vec{a} \times \vec{b})$ are the set of two vectors \perp both \vec{a}, \vec{b}
14.	D	For reflection in XY-plane negate the z-coordinate.
15.	A	$\vec{r} = \vec{a} + \lambda \vec{b}$; where \vec{a} denotes the passing point and \vec{b} denotes the direction vector of the line.
16.	B	$P(\text{two hits}) = P(A)P(B)P(C') + P(A)P(B')P(C) + P(A')P(B)P(C)$
17.	B	$\frac{dy}{dx} = \frac{3t}{2} \Rightarrow \frac{d^2y}{dx^2} = \frac{3}{2} \cdot \frac{dt}{dx} = \frac{3}{4t}$
18.	1	for point of local minima put $f'(x) = 0$ $\Rightarrow x = 4$ and $f''(x) = +ve$ Then $f(4) = 1$ = minimum value
19.	D	A is false as for mutually exclusive events $P(A \cap B) = 0$ always; but R is true here.
20.	A	Both A and R are true and correct explanation.

खंड - ब

SECTION – B

(2×5=10)

21.	<p>Consider the corresponding eqn. system:</p> $x + y = 8$ $3x + 5y = 15$ <table border="1" data-bbox="372 439 736 530"> <tr> <td>x</td> <td>0</td> <td>8</td> </tr> <tr> <td>y</td> <td>8</td> <td>0</td> </tr> </table> <table border="1" data-bbox="845 481 1209 572"> <tr> <td>x</td> <td>5</td> <td>0</td> </tr> <tr> <td>y</td> <td>0</td> <td>3</td> </tr> </table>	x	0	8	y	8	0	x	5	0	y	0	3	1
x	0	8												
y	8	0												
x	5	0												
y	0	3												
22(a).	<p>On multiplying first two</p> $[2x - 9 \quad 4x] \begin{bmatrix} x \\ 8 \end{bmatrix} = [0]$ $2x^2 + 23x = 0$ $x = 0, -\frac{23}{2}$ <p>OR</p> <p>22(b).</p> <p>Area of triangle = $\frac{1}{2} \begin{vmatrix} 1 & 0 & 1 \\ 6 & 0 & 1 \\ 4 & 3 & 1 \end{vmatrix}$</p> $= \frac{15}{2} \text{ square units}$	$\frac{1}{2}$ $\frac{1}{2}$ 1 1 1 1												
23(a).	<p>f will be continuous at $x = 3$ if</p>													


OR 23(b). 24. 25.	<p> $R.H.L. = L.H.L. = f(0)$ $\lim_{x \rightarrow 0} \frac{2\sin^2 2x}{8x^2} = k$ $\lim_{x \rightarrow 0} \left(\frac{\sin 2x}{2x} \right)^2 = k$ $\Rightarrow k = 1$ </p> <p> $V = x^3 \Rightarrow \frac{dV}{dt} = 3x^2 \frac{dx}{dt} = 9x^2$ Put $x = 10 \text{ cm} \Rightarrow \frac{dV}{dt} = 900 \text{ cm}^3/\text{s}$ </p> <p> $P(\text{Exactly one of A, B is selected}) = 0.6 \text{ (given)}$ $P(A \cap B') + P(A' \cap B) = 0.6$ $P(A) P(B') + P(A') P(B) = 0.6$ $\Rightarrow (0.7)(1-p) + (0.3)p = 0.6$ $\Rightarrow p = 0.25$ Thus the probability that B gets selected is 0.25 </p> <p> $\int \tan^2 x \cdot \tan^2 x \cdot dx = \int (\sec^2 x - 1) \cdot \tan^2 x$ $= \int \sec^2 x \cdot \tan^2 x \cdot dx - \int \sec^2 dx + \int 1 dx$ $= \frac{1}{3} \tan^3 x - \tan x + x + c$ </p>	1 1 1 1 1 1 1 1
----------------------------	--	--------------------------------------

खंड - स

SECTION – C

(3×6=18)

26.

O (0, 0), A (2, 0), B (0, 3) and C ($\frac{20}{19}, \frac{45}{19}$) are the corner points of the feasible region.

Corner Point	Value of Z	Remarks
O(0,0)	0	
A(2,0)	10	
B(0,3)	9	
C(20/19,45/19)	235/19	MAXIMUM

1.5

0.5

1

27(a).

R is reflexive since $(L_1, L_1) \in R$
 R is symmetric since if $(L_1, L_2) \in R$, then $(L_2, L_1) \in R$
 R is transitive since if $(L_1, L_2) \in R$, and $(L_2, L_3) \in R$ then $(L_1, L_3) \in R$
 $\Rightarrow R$ is transitive.

Set of all lines related to $y = 2x + 4$ is given by
 $y = 2x + c$

1

1

1

OR
27(b).

Put $x = \tan \theta \Rightarrow \theta = \tan^{-1} x$
 Then $\tan^{-1} \frac{\sqrt{1+x^2}-1}{x} = \tan^{-1} \left(\frac{\sec \theta - 1}{\tan \theta} \right) =$
 $= \tan^{-1} \left(\frac{1-\cos \theta}{\sin \theta} \right) = \tan^{-1} \left(\tan \frac{\theta}{2} \right) = \frac{\theta}{2} = \frac{1}{2} \tan^{-1} x$

1.5

1.5

28.	<p>The total amount of money that will be received from the sale of all these books can be represented in the form of matrix multiplication as:</p> $ \begin{aligned} (\text{Total Amount}) &= 12[10\ 8\ 10][80\ 60\ 40] \\ &= 12[10 \times 80 + 8 \times 60 + 10 \times 40] \\ &= 12[800 + 480 + 400] \\ &= 12[1680] = 20160 \text{ Rs.} \end{aligned} $	1 1 1
29(a).	$ \begin{aligned} y &= (\tan^{-1} x)^2 \\ \Rightarrow y_1 &= 2 \tan^{-1} x \frac{d}{dx} (\tan^{-1} x) \\ y_1 &= 2 \tan^{-1} x \cdot \frac{1}{1+x^2} \\ (1+x^2) \cdot y_1 &= 2 \tan^{-1} x \\ \text{Diff. again we get the result.} \end{aligned} $	1½ 1½
OR 29(b).	$ \begin{aligned} y &= \log\left(\frac{1-x^2}{1+x^2}\right) = \log(1-x) + \log(1+x) - \log(1+x^2) \\ \frac{dy}{dx} &= \frac{-1}{1-x} + \frac{1}{1+x} - \frac{2x}{1+x^2} \\ &= \frac{-4x}{1-x^4} \end{aligned} $	1 1 1
30.	$ \int x \log x \, dx = $ <p>Integrating by parts:</p> $ \begin{aligned} &\Rightarrow \log x \cdot \frac{x^2}{2} - \int \frac{1}{x} \cdot \frac{x^2}{2} \, dx \\ &\Rightarrow \frac{x^2 \log x}{2} - \frac{x^2}{4} + c \end{aligned} $	1.5 1.5
31.	<p>Here $m = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$, $n = \cos \frac{\pi}{2} = 0$</p> $ \begin{aligned} l^2 + m^2 + n^2 &= 1 \\ l &= \pm \frac{1}{\sqrt{2}} \\ \vec{r} &= l\hat{i} + m\hat{j} + n\hat{k} \\ \vec{r} &= \pm 3\hat{i} + 3\hat{j} \end{aligned} $	1 1 1

खंड - द

SECTION – D

(5×4=20)

32(a).	$\int_0^{\frac{\pi}{2}} \log \sin x \, dx = \int_0^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2} - x\right) \, dx$ $= \int_0^{\frac{\pi}{2}} \log \cos x \, dx$ $2I = \int_0^{\frac{\pi}{2}} (\log \sin x + \log \cos x) \, dx = \int_0^{\frac{\pi}{2}} \log \left(\frac{\sin 2x}{2}\right) \, dx$ $2I = \int_0^{\frac{\pi}{2}} \sin 2x \, dx - \frac{\pi}{2} \log 2$ <p>Put $2x = t \Rightarrow 2dx = dt$, when $x = 0, t = 0$; when $x = \frac{\pi}{2}, t = \pi$</p> $2I = \frac{1}{2} \int_0^{\pi} \log \sin t \, dt - \frac{\pi}{2} \log 2$ $= \frac{2}{2} \int_0^{\frac{\pi}{2}} \log \sin t \, dt - \frac{\pi}{2} \log 2$ $2I = I - \frac{\pi}{2} \log 2$ $I = \frac{-\pi}{2} \log 2$	1 1 1 1 1 1 1
OR 32(b).	<p>Given D.E. is of the form:</p> $\frac{dy}{dx} + Py = Q \text{ where } P = -1, Q = \cos x$ <p>I.F. = $e^{\int -1 \, dx} = e^{-x}$</p> <p>Solution is :</p> $ye^{-x} = \int e^{-x} \cos x \, dx + C$ <p>Let $I = \int e^{-x} \cos x \, dx$</p> $= -\cos x e^{-x} - \int \sin x e^{-x} \, dx$ $I = -\cos x e^{-x} + \sin x e^{-x} - \int e^{-x} \cos x \, dx$ $I = \frac{e^{-x}(\sin x - \cos x)}{2}$ <p>Using this we get:</p> $y = \left(\frac{\sin x - \cos x}{2} \right) + Ce^x$	1 1 1 1 1 1 1

33(a).	<p>(Let the three amounts are) = x, y, z Rs. (According to question):</p> $x + y + z = 7000$ $x - y = 0$ $\frac{5}{100}x + \frac{8}{100}y + \frac{17}{200}z = 550$ $\Rightarrow 10x + 16y + 17z = 110000$ <p>This system of equations can be written as:</p> $AX = B, \text{ where } \overline{\text{ज्ञात}}$ $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 10 & 16 & 17 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, B = \begin{bmatrix} 7000 \\ 0 \\ 110000 \end{bmatrix}$ $\Rightarrow A = -8 \neq 0$ <p>(Now):</p> $A_{11} = -17, A_{12} = -17, A_{13} = 26$ $A_{21} = -1, A_{22} = 7, A_{23} = -6$ $A_{31} = 1, A_{32} = 1, A_{33} = -2$ $adj A = \begin{bmatrix} -17 & -1 & 1 \\ -17 & 7 & 1 \\ 26 & -6 & -2 \end{bmatrix}$ <p>(Thus):</p> $A^{-1} = \frac{1}{ A } \cdot adj A = \frac{1}{-8} \begin{bmatrix} -17 & -1 & 1 \\ -17 & 7 & 1 \\ 26 & -6 & -2 \end{bmatrix}$ <p>(Since):</p> $X = A^{-1}B = \frac{1}{-8} \begin{bmatrix} -17 & -1 & 1 \\ -17 & 7 & 1 \\ 26 & -6 & -2 \end{bmatrix} \begin{bmatrix} 7000 \\ 0 \\ 110000 \end{bmatrix}$ $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1125 \\ 4750 \\ 4750 \end{bmatrix}$ <p style="text-align: center;">अथवा (OR)</p> <p>OR</p> <p>Let $\frac{1}{x} = p, \frac{1}{y} = q, \frac{1}{z} = r$</p> <p>33(b). The given system of equations can be written as:</p> $AX = B, \text{ where}$
--------	---

$A = \begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix}, \quad X = \begin{bmatrix} p \\ q \\ r \end{bmatrix}, B = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$ $ A = 1200 \neq 0$ $\Rightarrow A^{-1} \text{ exists}$ <p>Co-factors of A are :</p> $A_{11} = 75, A_{12} = 110, A_{13} = 72$ $A_{21} = 150, A_{22} = -100, A_{23} = 0$ $A_{31} = 75, A_{32} = 30, A_{33} = -24$ $\Rightarrow adj A = \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$ $\Rightarrow A^{-1} = \frac{adj A}{ A } = \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$ $\Rightarrow X = A^{-1} B = \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$ $\Rightarrow X = \frac{1}{1200} \begin{bmatrix} 600 \\ 400 \\ 240 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{2}{3} \\ \frac{1}{5} \end{bmatrix}$ $\Rightarrow p = \frac{1}{2}, q = \frac{1}{3}, r = \frac{1}{5} \Rightarrow x = 2, y = 3, z = 5$	1	1
34(a)	<p>Comparing with $\vec{r} = \vec{a} + \lambda \vec{b}$ we get $\vec{a}_1, \vec{a}_2, \vec{b}_1, \vec{b}_2$</p> <p>Now $\vec{a}_2 - \vec{a}_1 = -10\hat{i} - 2\hat{j} - 3\hat{k}$</p> <p>And</p> $\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 3 & -2 & -2 \end{vmatrix} = 8\hat{i} + 8\hat{j} + 4\hat{k}$	1

	<p>Shortest Distance = $\left \frac{(\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_1)}{ \vec{b}_1 \times \vec{b}_2 } \right$</p> $= \left \frac{-108}{12} \right = 9 \text{ units}$ <p>OR</p> <p>34(b). Rewrite the eqn of given line</p> $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3} = k \text{ (say)}$ <p>Then arbitrary D(x,y,z) point on the line is</p> $x = k, y = 2k + 1, z = 3k + 2$ <p>Let this point D is the foot of perpendicular on the line.</p> <p>Now position vector from given point P (1,6,3) to Point D is given by:</p> $\vec{PD} = (k-1)\hat{i} + (2k-5)\hat{j} + (3k-1)\hat{k}$ <p>Now</p> <p>Direction vector of line $\vec{b} = 1\hat{i} + 2\hat{j} + 3\hat{k}$</p> <p>Here $\vec{b} \perp \vec{PD} \Rightarrow \vec{b} \cdot \vec{PD} = 0$</p> $\Rightarrow k-1 + 4k-10 + 9k-3 = 0$ $\Rightarrow 14k-14 = 0$ $\Rightarrow k = 1$ <p>So foot of perpendicular is:</p> <p>$D = (1, 3, 5)$</p> <p>Let $E(a, b, c)$ be the image of P(1,6,3) then D(1,3,5) will be mid point of PE.</p> <p>So by mid point formula :</p> $\frac{a+1}{2} = 1, \frac{b+6}{2} = 3, \frac{c+3}{2} = 5$ $\Rightarrow a = 1, b = 0, c = 7$ <p>So image of P = E (1,0,7)</p>	<p>1</p> <p>1</p> <p>1</p> <p>1</p> <p>1</p> <p>1</p> <p>1</p> <p>1</p>
--	--	---

	<p>Also the distance PE =</p> $\sqrt{(1-1)^2 + (6-0)^2 + (3-7)^2} = \sqrt{0 + 36 + 16} \\ = \sqrt{52} \text{ units}$	1
35(a).	<p>Let S denotes the success(getting 6) and F denotes the failure(not getting 6).</p> <p>Thus $P(S) = \frac{1}{6}$, $P(F) = \frac{5}{6}$</p> <p>$P(\text{A wins the first throw}) = P(S) = \frac{1}{6}$</p> <p>A gets the third throw ,when the first throw by A and second throw by B results in failures.</p> <p>So, $P(\text{A wins in the third throw}) = P(\text{FFS})$</p> $= \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} = \left(\frac{5}{6}\right)^2 \times \frac{1}{6}$ <p>Similarly</p> <p>$P(\text{A wins in the fifth throw}) = \left(\frac{5}{6}\right)^4 \times \frac{1}{6}$</p> <p>Hence</p> $P(\text{A wins}) = \frac{1}{6} + \left(\frac{5}{6}\right)^2 \times \frac{1}{6} + \left(\frac{5}{6}\right)^4 \times \frac{1}{6} + \dots \dots \dots$ $= \frac{\frac{1}{6}}{1 - \frac{25}{36}} = \frac{6}{11} , P(B) = 1 - \frac{6}{11} = \frac{5}{11}$	1
OR		
35(b).	<p>Let E= the chosen coin is two headed</p> <p>F= the chosen coin is biased</p> <p>G = the chosen coin is unbiased</p> <p>Then E,F,G are mutually exclusive and exhaustive events.</p> <p>$P(E)=P(F)=P(G)=\frac{1}{3}$</p> <p>Let A = the tossed coin shows head</p>	1

	<p>Then $P(A/E)=1$, $P(A/F) = \frac{3}{4}$, $P(A/G)=1/2$ Using Bayes' Theorem :</p> $P(E/A) = \frac{P(E).P\left(\frac{A}{E}\right)}{P(E).P\left(\frac{A}{E}\right) + P(F).P\left(\frac{A}{F}\right) + P(G).P\left(\frac{A}{G}\right)} = \frac{4}{9}$	<p>2</p> <p>2</p>
--	--	-------------------

खंड - ल

SECTION – E

(4×3=12)

<p>36.</p>	<p>Here:</p> <p>(a). Semi circular</p> <p>(b). $(-2,0)$ and $(2,0)$</p> <p>(c). $\text{Area} = \int_{-2}^2 \sqrt{4 - x^2} dx = \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \cdot \sin^{-1} \frac{x}{2} \right]_{-2}^2 = 2\pi$ sq. units</p>	<p>1</p> <p>1</p> <p>2</p>
<p>37.</p> <p>(a)</p> <p>(b)</p> <p>(c)</p>	<p>If $AR=x$ m \Rightarrow $BR = (20 - x)$ m</p> <p>$S(x) = RP^2 + RQ^2 = 2x^2 - 40x + 1140$</p> <p>Here co-eff. Of $x = -40$</p> <p>Using second derivative test :</p> <p>on putting $S'(x) = 0 \Rightarrow 4x - 40 = 0$ $\Rightarrow x = 10$</p> <p>$S''(x) = 4 = +ve \Rightarrow x = 10$ is a point of minima.</p> <p>$AR = 10$ m, $BR = 10$ m</p>	<p>1</p> <p>1</p> <p>1</p> <p>1</p>
<p>38.</p> <p>(a)</p>	<p>$n(S)=4$, $n(J)=3$</p> <p>$\text{No. of Relations} = 2^{n(S).n(J)} = 2^{12}$</p>	<p>1</p>

(b)	Many one and onto since J_2 has two preimages.	1
(c)	$\text{Number of one one functions from } S \text{ to } J = \frac{m!}{(m-n)!},$ $\text{Where } m = n(S) = 4, \ n = n(J) = 3$ So $\text{Number of one one functions from } S \text{ to } J = \frac{4!}{(4-3)!} = 24$	2